-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer.py
66 lines (55 loc) · 2.24 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import argparse
import numpy as np
import torch
import yaml
from torch.utils.data import DataLoader
from dataset.ssdg_dataset import SSDGDataset
from evaluate_metrics import evaluate_volume_metrics
from model.siab import SIAB
from model.unet import UNet
from utils import fix_seed
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--domain', type=int, required=True)
parser.add_argument('--key', default="model")
parser.add_argument('--seed', type=int, default=1339)
def main():
args = parser.parse_args()
fix_seed(args.seed)
cfg = yaml.load(open(args.config, "r"), Loader=yaml.Loader)
valset = SSDGDataset(name=cfg["dataset"],
root=cfg["data_root"],
target_domain=args.domain,
mode="val",
n_domains=cfg["n_domains"],
image_size=cfg["image_size"])
valloader = DataLoader(valset,
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=True,
drop_last=False)
ckpt = torch.load(args.path)
model = UNet(class_num=cfg["n_classes"], in_chns=cfg["n_channels"])
model = SIAB.convert_siab(model,
num_domains=cfg["n_domains"],
num_global_in=ckpt["num_global_in"])
model.load_state_dict(ckpt[args.key])
model.cuda()
collectors = evaluate_volume_metrics(model,
valloader,
cfg,
is_target_domain=True,
verbose=True)
print(f"{valset} {args.path}")
for collector in collectors:
metric = collector.metric
mean, _, domain_classwise = collector.get()
classwise = domain_classwise[0]
instance_values = collector.averaged_instances[0]
std = np.std(instance_values)
print(f"[{metric}] Mean: {mean:.4f}±{std:.4f}, "
f"Class: {','.join([f'{i:.4f}' for i in classwise])}")
if __name__ == '__main__':
main()