-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_trainer.cc
210 lines (184 loc) · 7.78 KB
/
multi_trainer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <time.h>
#include <fstream>
#include "include/save_model.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/dataset_factory.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "gflags/gflags.h"
DEFINE_string(filelist, "train_filelist.txt", "filelist for fluid dataset");
DEFINE_string(data_proto_desc, "data.proto", "data feed protobuf description");
DEFINE_string(startup_program_file, "startup_program",
"startup program description");
DEFINE_string(main_program_file, "", "main program description");
DEFINE_string(loss_name, "mean_0.tmp_0",
"loss tensor name in the main program");
DEFINE_string(save_dir, "cnn_model", "directory to save trained models");
DEFINE_int32(epoch_num, 30, "number of epochs to run when training");
namespace paddle {
namespace train {
void ReadBinaryFile(const std::string& filename, std::string* contents) {
std::ifstream fin(filename, std::ios::in | std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s", filename);
fin.seekg(0, std::ios::end);
contents->clear();
contents->resize(fin.tellg());
fin.seekg(0, std::ios::beg);
fin.read(&(contents->at(0)), contents->size());
fin.close();
}
std::unique_ptr<paddle::framework::ProgramDesc> LoadProgramDesc(
const std::string& model_filename) {
VLOG(3) << "loading model from " << model_filename;
std::string program_desc_str;
ReadBinaryFile(model_filename, &program_desc_str);
std::unique_ptr<paddle::framework::ProgramDesc> main_program(
new paddle::framework::ProgramDesc(program_desc_str));
return main_program;
}
bool IsPersistable(const paddle::framework::VarDesc* var) {
if (var->Persistable() &&
var->GetType() != paddle::framework::proto::VarType::FEED_MINIBATCH &&
var->GetType() != paddle::framework::proto::VarType::FETCH_LIST &&
var->GetType() != paddle::framework::proto::VarType::RAW) {
return true;
}
return false;
}
} // namespace train
} // namespace paddle
void ThreadedRunTrain(
const std::unique_ptr<paddle::framework::ProgramDesc>& main_program,
std::vector<paddle::framework::DataFeed*> readers,
paddle::framework::Executor* executor,
paddle::framework::Scope* scope,
std::vector<std::string> file_vec,
const int thread_id,
int num_thread
){
std::vector<std::string> thread_file_vec;
for (int offset = thread_id; offset < file_vec.size();offset += num_thread){
thread_file_vec.pushback(file_vec[offset]);
}
readers[thread_id]->SetPlace(paddle::platform::CPUPlace());
const std::vector<std::string>& input_feed_names =
readers[thread_id]->GetUseSlotAlias();
for (auto name : input_feed_names) {
readers[thread_id]->AddFeedVar(scope.Var(name), name);
}
readers[thread_id]->Start();
std::string trainer_desc_str;
trainer = executor.InitForDataset(&main_program, &trainer_desc_str, &scope, &dataset_ptr)
std::vector<float> loss_vec;
while (readers[thread_id]->Next() > 0) {
//executor.Run(*main_program, &scope, 0, false, true);
executor.RunFromDataset(&trainer)
loss_vec.push_back(
loss_var->Get<paddle::framework::LoDTensor>().data<float>()[0]);
}
float average_loss = accumulate(loss_vec.begin(), loss_vec.end(), 0.0) / loss_vec.size();
LOG(INFO) <<"thread: "<<thread_id <<"; epoch: " << epoch << "; average loss: " << average_loss;
}
int main(int argc, char* argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
std::cerr << "filelist: " << FLAGS_filelist << std::endl;
std::cerr << "data_proto_desc: " << FLAGS_data_proto_desc << std::endl;
std::cerr << "startup_program_file: " << FLAGS_startup_program_file
<< std::endl;
std::cerr << "main_program_file: " << FLAGS_main_program_file << std::endl;
std::cerr << "loss_name: " << FLAGS_loss_name << std::endl;
std::cerr << "save_dir: " << FLAGS_save_dir << std::endl;
std::cerr << "epoch_num: " << FLAGS_epoch_num << std::endl;
std::string filelist = std::string(FLAGS_filelist);
std::vector<std::string> file_vec;
std::ifstream fin(filelist);
if (fin) {
std::string filename;
while (fin >> filename) {
file_vec.push_back(filename);
}
}
PADDLE_ENFORCE_GE(file_vec.size(), 1, "At least one file to train");
paddle::framework::InitDevices(false);
const auto cpu_place = paddle::platform::CPUPlace();
paddle::framework::Executor executor(cpu_place);
paddle::framework::Scope scope;
auto startup_program =
paddle::train::LoadProgramDesc(std::string(FLAGS_startup_program_file));
auto main_program =
paddle::train::LoadProgramDesc(std::string(FLAGS_main_program_file));
executor.Run(*startup_program, &scope, 0);
std::string data_feed_desc_str;
paddle::train::ReadBinaryFile(std::string(FLAGS_data_proto_desc),
&data_feed_desc_str);
VLOG(3) << "load data feed desc done.";
std::unique_ptr<paddle::framework::Dataset> dataset_ptr;
dataset_ptr =
paddle::framework::DatasetFactory::CreateDataset("MultiSlotDataset");
VLOG(3) << "initialize dataset ptr done";
// find all params
std::vector<std::string> param_names;
const paddle::framework::BlockDesc& global_block = main_program->Block(0);
for (auto* var : global_block.AllVars()) {
if (paddle::train::IsPersistable(var)) {
VLOG(3) << "persistable variable's name: " << var->Name();
param_names.push_back(var->Name());
}
}
int num_thread = 10;
int epoch_num = FLAGS_epoch_num;
std::string loss_name = FLAGS_loss_name;
auto loss_var = scope.Var(loss_name);
LOG(INFO) << "Start training...";
for (int epoch = 0; epoch < epoch_num; ++epoch) {
VLOG(3) << "Epoch:" << epoch;
// get reader
dataset_ptr->SetFileList(file_vec);
VLOG(3) << "set file list done";
dataset_ptr->SetThreadNum(num_thread);
VLOG(3) << "set thread num done";
dataset_ptr->SetDataFeedDesc(data_feed_desc_str);
VLOG(3) << "set data feed desc done";
dataset_ptr->CreateReaders();
const std::vector<paddle::framework::DataFeed*> readers =
dataset_ptr->GetReaders();
PADDLE_ENFORCE_EQ(readers.size(), thread_num,
"readers num should be equal to thread num");
std::vector<std::thread*> threads;
for (int i = 0; i < num_thread; ++i) {
threads.push_back(new std::thread(
ThreadedRunTrain, std::ref(main_program), &executor, &scope,&readers,i));
}
for (int i = 0; i < num_threads; ++i) {
threads[i]->join();
delete threads[i];
}
dataset_ptr->DestroyReaders();
// save model
std::string save_dir_root = FLAGS_save_dir;
std::string save_dir =
save_dir_root + "/epoch" + std::to_string(epoch) + ".model";
paddle::framework::save_model(main_program, &scope, param_names, save_dir,
false);
}
}