forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwiki_data.py
530 lines (491 loc) · 19.8 KB
/
wiki_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Loads the WikiQuestions dataset.
An example consists of question, table. Additionally, we store the processed
columns which store the entries after performing number, date and other
preprocessing as done in the baseline.
columns, column names and processed columns are split into word and number
columns.
lookup answer (or matrix) is also split into number and word lookup matrix
Author: aneelakantan (Arvind Neelakantan)
"""
import math
import os
import re
import numpy as np
import unicodedata as ud
import tensorflow as tf
bad_number = -200000.0 #number that is added to a corrupted table entry in a number column
def is_nan_or_inf(number):
return math.isnan(number) or math.isinf(number)
def strip_accents(s):
u = unicode(s, "utf-8")
u_new = ''.join(c for c in ud.normalize('NFKD', u) if ud.category(c) != 'Mn')
return u_new.encode("utf-8")
def correct_unicode(string):
string = strip_accents(string)
string = re.sub("\xc2\xa0", " ", string).strip()
string = re.sub("\xe2\x80\x93", "-", string).strip()
#string = re.sub(ur'[\u0300-\u036F]', "", string)
string = re.sub("‚", ",", string)
string = re.sub("…", "...", string)
#string = re.sub("[·・]", ".", string)
string = re.sub("ˆ", "^", string)
string = re.sub("˜", "~", string)
string = re.sub("‹", "<", string)
string = re.sub("›", ">", string)
#string = re.sub("[‘’´`]", "'", string)
#string = re.sub("[“â€Â«Â»]", "\"", string)
#string = re.sub("[•†‡]", "", string)
#string = re.sub("[â€â€‘–—]", "-", string)
string = re.sub(ur'[\u2E00-\uFFFF]', "", string)
string = re.sub("\\s+", " ", string).strip()
return string
def simple_normalize(string):
string = correct_unicode(string)
# Citations
string = re.sub("\[(nb ?)?\d+\]", "", string)
string = re.sub("\*+$", "", string)
# Year in parenthesis
string = re.sub("\(\d* ?-? ?\d*\)", "", string)
string = re.sub("^\"(.*)\"$", "", string)
return string
def full_normalize(string):
#print "an: ", string
string = simple_normalize(string)
# Remove trailing info in brackets
string = re.sub("\[[^\]]*\]", "", string)
# Remove most unicode characters in other languages
string = re.sub(ur'[\u007F-\uFFFF]', "", string.strip())
# Remove trailing info in parenthesis
string = re.sub("\([^)]*\)$", "", string.strip())
string = final_normalize(string)
# Get rid of question marks
string = re.sub("\?", "", string).strip()
# Get rid of trailing colons (usually occur in column titles)
string = re.sub("\:$", " ", string).strip()
# Get rid of slashes
string = re.sub(r"/", " ", string).strip()
string = re.sub(r"\\", " ", string).strip()
# Replace colon, slash, and dash with space
# Note: need better replacement for this when parsing time
string = re.sub(r"\:", " ", string).strip()
string = re.sub("/", " ", string).strip()
string = re.sub("-", " ", string).strip()
# Convert empty strings to UNK
# Important to do this last or near last
if not string:
string = "UNK"
return string
def final_normalize(string):
# Remove leading and trailing whitespace
string = re.sub("\\s+", " ", string).strip()
# Convert entirely to lowercase
string = string.lower()
# Get rid of strangely escaped newline characters
string = re.sub("\\\\n", " ", string).strip()
# Get rid of quotation marks
string = re.sub(r"\"", "", string).strip()
string = re.sub(r"\'", "", string).strip()
string = re.sub(r"`", "", string).strip()
# Get rid of *
string = re.sub("\*", "", string).strip()
return string
def is_number(x):
try:
f = float(x)
return not is_nan_or_inf(f)
except ValueError:
return False
except TypeError:
return False
class WikiExample(object):
def __init__(self, id, question, answer, table_key):
self.question_id = id
self.question = question
self.answer = answer
self.table_key = table_key
self.lookup_matrix = []
self.is_bad_example = False
self.is_word_lookup = False
self.is_ambiguous_word_lookup = False
self.is_number_lookup = False
self.is_number_calc = False
self.is_unknown_answer = False
class TableInfo(object):
def __init__(self, word_columns, word_column_names, word_column_indices,
number_columns, number_column_names, number_column_indices,
processed_word_columns, processed_number_columns, orig_columns):
self.word_columns = word_columns
self.word_column_names = word_column_names
self.word_column_indices = word_column_indices
self.number_columns = number_columns
self.number_column_names = number_column_names
self.number_column_indices = number_column_indices
self.processed_word_columns = processed_word_columns
self.processed_number_columns = processed_number_columns
self.orig_columns = orig_columns
class WikiQuestionLoader(object):
def __init__(self, data_name, root_folder):
self.root_folder = root_folder
self.data_folder = os.path.join(self.root_folder, "data")
self.examples = []
self.data_name = data_name
def num_questions(self):
return len(self.examples)
def load_qa(self):
data_source = os.path.join(self.data_folder, self.data_name)
f = tf.gfile.GFile(data_source, "r")
id_regex = re.compile("\(id ([^\)]*)\)")
for line in f:
id_match = id_regex.search(line)
id = id_match.group(1)
self.examples.append(id)
def load(self):
self.load_qa()
def is_date(word):
if (not (bool(re.search("[a-z0-9]", word, re.IGNORECASE)))):
return False
if (len(word) != 10):
return False
if (word[4] != "-"):
return False
if (word[7] != "-"):
return False
for i in range(len(word)):
if (not (word[i] == "X" or word[i] == "x" or word[i] == "-" or re.search(
"[0-9]", word[i]))):
return False
return True
class WikiQuestionGenerator(object):
def __init__(self, train_name, dev_name, test_name, root_folder):
self.train_name = train_name
self.dev_name = dev_name
self.test_name = test_name
self.train_loader = WikiQuestionLoader(train_name, root_folder)
self.dev_loader = WikiQuestionLoader(dev_name, root_folder)
self.test_loader = WikiQuestionLoader(test_name, root_folder)
self.bad_examples = 0
self.root_folder = root_folder
self.data_folder = os.path.join(self.root_folder, "annotated/data")
self.annotated_examples = {}
self.annotated_tables = {}
self.annotated_word_reject = {}
self.annotated_word_reject["-lrb-"] = 1
self.annotated_word_reject["-rrb-"] = 1
self.annotated_word_reject["UNK"] = 1
def is_money(self, word):
if (not (bool(re.search("[a-z0-9]", word, re.IGNORECASE)))):
return False
for i in range(len(word)):
if (not (word[i] == "E" or word[i] == "." or re.search("[0-9]",
word[i]))):
return False
return True
def remove_consecutive(self, ner_tags, ner_values):
for i in range(len(ner_tags)):
if ((ner_tags[i] == "NUMBER" or ner_tags[i] == "MONEY" or
ner_tags[i] == "PERCENT" or ner_tags[i] == "DATE") and
i + 1 < len(ner_tags) and ner_tags[i] == ner_tags[i + 1] and
ner_values[i] == ner_values[i + 1] and ner_values[i] != ""):
word = ner_values[i]
word = word.replace(">", "").replace("<", "").replace("=", "").replace(
"%", "").replace("~", "").replace("$", "").replace("£", "").replace(
"€", "")
if (re.search("[A-Z]", word) and not (is_date(word)) and not (
self.is_money(word))):
ner_values[i] = "A"
else:
ner_values[i] = ","
return ner_tags, ner_values
def pre_process_sentence(self, tokens, ner_tags, ner_values):
sentence = []
tokens = tokens.split("|")
ner_tags = ner_tags.split("|")
ner_values = ner_values.split("|")
ner_tags, ner_values = self.remove_consecutive(ner_tags, ner_values)
#print "old: ", tokens
for i in range(len(tokens)):
word = tokens[i]
if (ner_values[i] != "" and
(ner_tags[i] == "NUMBER" or ner_tags[i] == "MONEY" or
ner_tags[i] == "PERCENT" or ner_tags[i] == "DATE")):
word = ner_values[i]
word = word.replace(">", "").replace("<", "").replace("=", "").replace(
"%", "").replace("~", "").replace("$", "").replace("£", "").replace(
"€", "")
if (re.search("[A-Z]", word) and not (is_date(word)) and not (
self.is_money(word))):
word = tokens[i]
if (is_number(ner_values[i])):
word = float(ner_values[i])
elif (is_number(word)):
word = float(word)
if (tokens[i] == "score"):
word = "score"
if (is_number(word)):
word = float(word)
if (not (self.annotated_word_reject.has_key(word))):
if (is_number(word) or is_date(word) or self.is_money(word)):
sentence.append(word)
else:
word = full_normalize(word)
if (not (self.annotated_word_reject.has_key(word)) and
bool(re.search("[a-z0-9]", word, re.IGNORECASE))):
m = re.search(",", word)
sentence.append(word.replace(",", ""))
if (len(sentence) == 0):
sentence.append("UNK")
return sentence
def load_annotated_data(self, in_file):
self.annotated_examples = {}
self.annotated_tables = {}
f = tf.gfile.GFile(in_file, "r")
counter = 0
for line in f:
if (counter > 0):
line = line.strip()
(question_id, utterance, context, target_value, tokens, lemma_tokens,
pos_tags, ner_tags, ner_values, target_canon) = line.split("\t")
question = self.pre_process_sentence(tokens, ner_tags, ner_values)
target_canon = target_canon.split("|")
self.annotated_examples[question_id] = WikiExample(
question_id, question, target_canon, context)
self.annotated_tables[context] = []
counter += 1
print "Annotated examples loaded ", len(self.annotated_examples)
f.close()
def is_number_column(self, a):
for w in a:
if (len(w) != 1):
return False
if (not (is_number(w[0]))):
return False
return True
def convert_table(self, table):
answer = []
for i in range(len(table)):
temp = []
for j in range(len(table[i])):
temp.append(" ".join([str(w) for w in table[i][j]]))
answer.append(temp)
return answer
def load_annotated_tables(self):
for table in self.annotated_tables.keys():
annotated_table = table.replace("csv", "annotated")
orig_columns = []
processed_columns = []
f = tf.gfile.GFile(os.path.join(self.root_folder, annotated_table), "r")
counter = 0
for line in f:
if (counter > 0):
line = line.strip()
line = line + "\t" * (13 - len(line.split("\t")))
(row, col, read_id, content, tokens, lemma_tokens, pos_tags, ner_tags,
ner_values, number, date, num2, read_list) = line.split("\t")
counter += 1
f.close()
max_row = int(row)
max_col = int(col)
for i in range(max_col + 1):
orig_columns.append([])
processed_columns.append([])
for j in range(max_row + 1):
orig_columns[i].append(bad_number)
processed_columns[i].append(bad_number)
#print orig_columns
f = tf.gfile.GFile(os.path.join(self.root_folder, annotated_table), "r")
counter = 0
column_names = []
for line in f:
if (counter > 0):
line = line.strip()
line = line + "\t" * (13 - len(line.split("\t")))
(row, col, read_id, content, tokens, lemma_tokens, pos_tags, ner_tags,
ner_values, number, date, num2, read_list) = line.split("\t")
entry = self.pre_process_sentence(tokens, ner_tags, ner_values)
if (row == "-1"):
column_names.append(entry)
else:
orig_columns[int(col)][int(row)] = entry
if (len(entry) == 1 and is_number(entry[0])):
processed_columns[int(col)][int(row)] = float(entry[0])
else:
for single_entry in entry:
if (is_number(single_entry)):
processed_columns[int(col)][int(row)] = float(single_entry)
break
nt = ner_tags.split("|")
nv = ner_values.split("|")
for i_entry in range(len(tokens.split("|"))):
if (nt[i_entry] == "DATE" and
is_number(nv[i_entry].replace("-", "").replace("X", ""))):
processed_columns[int(col)][int(row)] = float(nv[
i_entry].replace("-", "").replace("X", ""))
#processed_columns[int(col)][int(row)] = float(nv[i_entry])
if (len(entry) == 1 and (is_number(entry[0]) or is_date(entry[0]) or
self.is_money(entry[0]))):
if (len(entry) == 1 and not (is_number(entry[0])) and
is_date(entry[0])):
entry[0] = entry[0].replace("X", "x")
counter += 1
word_columns = []
processed_word_columns = []
word_column_names = []
word_column_indices = []
number_columns = []
processed_number_columns = []
number_column_names = []
number_column_indices = []
for i in range(max_col + 1):
if (self.is_number_column(orig_columns[i])):
number_column_indices.append(i)
number_column_names.append(column_names[i])
temp = []
for w in orig_columns[i]:
if (is_number(w[0])):
temp.append(w[0])
number_columns.append(temp)
processed_number_columns.append(processed_columns[i])
else:
word_column_indices.append(i)
word_column_names.append(column_names[i])
word_columns.append(orig_columns[i])
processed_word_columns.append(processed_columns[i])
table_info = TableInfo(
word_columns, word_column_names, word_column_indices, number_columns,
number_column_names, number_column_indices, processed_word_columns,
processed_number_columns, orig_columns)
self.annotated_tables[table] = table_info
f.close()
def answer_classification(self):
lookup_questions = 0
number_lookup_questions = 0
word_lookup_questions = 0
ambiguous_lookup_questions = 0
number_questions = 0
bad_questions = 0
ice_bad_questions = 0
tot = 0
got = 0
ice = {}
with tf.gfile.GFile(
self.root_folder + "/arvind-with-norms-2.tsv", mode="r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if (not (self.annotated_examples.has_key(line.split("\t")[0]))):
continue
if (len(line.split("\t")) == 4):
line = line + "\t" * (5 - len(line.split("\t")))
if (not (is_number(line.split("\t")[2]))):
ice_bad_questions += 1
(example_id, ans_index, ans_raw, process_answer,
matched_cells) = line.split("\t")
if (ice.has_key(example_id)):
ice[example_id].append(line.split("\t"))
else:
ice[example_id] = [line.split("\t")]
for q_id in self.annotated_examples.keys():
tot += 1
example = self.annotated_examples[q_id]
table_info = self.annotated_tables[example.table_key]
# Figure out if the answer is numerical or lookup
n_cols = len(table_info.orig_columns)
n_rows = len(table_info.orig_columns[0])
example.lookup_matrix = np.zeros((n_rows, n_cols))
exact_matches = {}
for (example_id, ans_index, ans_raw, process_answer,
matched_cells) in ice[q_id]:
for match_cell in matched_cells.split("|"):
if (len(match_cell.split(",")) == 2):
(row, col) = match_cell.split(",")
row = int(row)
col = int(col)
if (row >= 0):
exact_matches[ans_index] = 1
answer_is_in_table = len(exact_matches) == len(example.answer)
if (answer_is_in_table):
for (example_id, ans_index, ans_raw, process_answer,
matched_cells) in ice[q_id]:
for match_cell in matched_cells.split("|"):
if (len(match_cell.split(",")) == 2):
(row, col) = match_cell.split(",")
row = int(row)
col = int(col)
example.lookup_matrix[row, col] = float(ans_index) + 1.0
example.lookup_number_answer = 0.0
if (answer_is_in_table):
lookup_questions += 1
if len(example.answer) == 1 and is_number(example.answer[0]):
example.number_answer = float(example.answer[0])
number_lookup_questions += 1
example.is_number_lookup = True
else:
#print "word lookup"
example.calc_answer = example.number_answer = 0.0
word_lookup_questions += 1
example.is_word_lookup = True
else:
if (len(example.answer) == 1 and is_number(example.answer[0])):
example.number_answer = example.answer[0]
example.is_number_calc = True
else:
bad_questions += 1
example.is_bad_example = True
example.is_unknown_answer = True
example.is_lookup = example.is_word_lookup or example.is_number_lookup
if not example.is_word_lookup and not example.is_bad_example:
number_questions += 1
example.calc_answer = example.answer[0]
example.lookup_number_answer = example.calc_answer
# Split up the lookup matrix into word part and number part
number_column_indices = table_info.number_column_indices
word_column_indices = table_info.word_column_indices
example.word_columns = table_info.word_columns
example.number_columns = table_info.number_columns
example.word_column_names = table_info.word_column_names
example.processed_number_columns = table_info.processed_number_columns
example.processed_word_columns = table_info.processed_word_columns
example.number_column_names = table_info.number_column_names
example.number_lookup_matrix = example.lookup_matrix[:,
number_column_indices]
example.word_lookup_matrix = example.lookup_matrix[:, word_column_indices]
def load(self):
train_data = []
dev_data = []
test_data = []
self.load_annotated_data(
os.path.join(self.data_folder, "training.annotated"))
self.load_annotated_tables()
self.answer_classification()
self.train_loader.load()
self.dev_loader.load()
for i in range(self.train_loader.num_questions()):
example = self.train_loader.examples[i]
example = self.annotated_examples[example]
train_data.append(example)
for i in range(self.dev_loader.num_questions()):
example = self.dev_loader.examples[i]
dev_data.append(self.annotated_examples[example])
self.load_annotated_data(
os.path.join(self.data_folder, "pristine-unseen-tables.annotated"))
self.load_annotated_tables()
self.answer_classification()
self.test_loader.load()
for i in range(self.test_loader.num_questions()):
example = self.test_loader.examples[i]
test_data.append(self.annotated_examples[example])
return train_data, dev_data, test_data