-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbidimensional_sample.c
468 lines (399 loc) · 14.3 KB
/
bidimensional_sample.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/* [Description]
Copyright 2010, 2011 Free Software Foundation, Inc.
Contributed by the Arenaire and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <stdlib.h>
#include <time.h>
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
#undef _PROTO
#define _PROTO __GMP_PROTO
#include "speed.h"
/* Let f be a function for which we have several implementations f1, f2... */
/* We wish to have a quick overview of which implementation is the best */
/* in function of the point x where f(x) is computed and of the prectision */
/* prec requested by the user. */
/* This is performed by drawing a 2D graphic with color indicating which */
/* method is the best. */
/* For building this graphic, the following structur is used (see the core */
/* of generate_2D_sample for an explanation of each field. */
struct speed_params2D
{
/* x-window: [min_x, max_x] or [2^min_x, 2^max_x] */
/* or [-2^(max_x), -2^(min_x)] U [2^min_x, 2^max_x] */
/* depending on the value of logarithmic_scale_x */
double min_x;
double max_x;
/* prec-window: [min_prec, max_prec] */
mpfr_prec_t min_prec;
mpfr_prec_t max_prec;
/* number of sample points for the x-axis and the prec-axis */
int nb_points_x;
int nb_points_prec;
/* should the sample points be logarithmically scaled or not */
int logarithmic_scale_x;
int logarithmic_scale_prec;
/* list of functions g1, g2... measuring the execution time of f1, f2... */
/* when given a point x and a precision prec stored in s. */
/* We use s->xp to store the significant of x, s->r to store its exponent */
/* s->align_xp to store its sign, and s->size to store prec. */
double (**speed_funcs) (struct speed_params *s);
};
/* Given an array t of nb_functions double indicating the timings of several */
/* implementations, return i, such that t[i] is the best timing. */
int
find_best (double *t, int nb_functions)
{
int i, ibest;
double best;
if (nb_functions<=0)
{
fprintf (stderr, "There is no function\n");
abort ();
}
ibest = 0;
best = t[0];
for (i=1; i<nb_functions; i++)
{
if (t[i]<best)
{
best = t[i];
ibest = i;
}
}
return ibest;
}
void generate_2D_sample (FILE *output, struct speed_params2D param)
{
mpfr_t temp;
double incr_prec;
mpfr_t incr_x;
mpfr_t x, x2;
double prec;
struct speed_params s;
int i;
int test;
int nb_functions;
double *t; /* store the timing of each implementation */
/* We first determine how many implementations we have */
nb_functions = 0;
while (param.speed_funcs[nb_functions] != NULL)
nb_functions++;
t = malloc (nb_functions * sizeof (double));
if (t == NULL)
{
fprintf (stderr, "Can't allocate memory.\n");
abort ();
}
mpfr_init2 (temp, MPFR_SMALL_PRECISION);
/* The precision is sampled from min_prec to max_prec with */
/* approximately nb_points_prec points. If logarithmic_scale_prec */
/* is true, the precision is multiplied by incr_prec at each */
/* step. Otherwise, incr_prec is added at each step. */
if (param.logarithmic_scale_prec)
{
mpfr_set_ui (temp, (unsigned long int)param.max_prec, MPFR_RNDU);
mpfr_div_ui (temp, temp, (unsigned long int)param.min_prec, MPFR_RNDU);
mpfr_root (temp, temp,
(unsigned long int)param.nb_points_prec, MPFR_RNDU);
incr_prec = mpfr_get_d (temp, MPFR_RNDU);
}
else
{
incr_prec = (double)param.max_prec - (double)param.min_prec;
incr_prec = incr_prec/((double)param.nb_points_prec);
}
/* The points x are sampled according to the following rule: */
/* If logarithmic_scale_x = 0: */
/* nb_points_x points are equally distributed between min_x and max_x */
/* If logarithmic_scale_x = 1: */
/* nb_points_x points are sampled from 2^(min_x) to 2^(max_x). At */
/* each step, the current point is multiplied by incr_x. */
/* If logarithmic_scale_x = -1: */
/* nb_points_x/2 points are sampled from -2^(max_x) to -2^(min_x) */
/* (at each step, the current point is divided by incr_x); and */
/* nb_points_x/2 points are sampled from 2^(min_x) to 2^(max_x) */
/* (at each step, the current point is multiplied by incr_x). */
mpfr_init2 (incr_x, param.max_prec);
if (param.logarithmic_scale_x == 0)
{
mpfr_set_d (incr_x,
(param.max_x - param.min_x)/(double)param.nb_points_x,
MPFR_RNDU);
}
else if (param.logarithmic_scale_x == -1)
{
mpfr_set_d (incr_x,
2.*(param.max_x - param.min_x)/(double)param.nb_points_x,
MPFR_RNDU);
mpfr_exp2 (incr_x, incr_x, MPFR_RNDU);
}
else
{ /* other values of param.logarithmic_scale_x are considered as 1 */
mpfr_set_d (incr_x,
(param.max_x - param.min_x)/(double)param.nb_points_x,
MPFR_RNDU);
mpfr_exp2 (incr_x, incr_x, MPFR_RNDU);
}
/* Main loop */
mpfr_init2 (x, param.max_prec);
mpfr_init2 (x2, param.max_prec);
prec = (double)param.min_prec;
while (prec <= param.max_prec)
{
printf ("prec = %d\n", (int)prec);
if (param.logarithmic_scale_x == 0)
mpfr_set_d (temp, param.min_x, MPFR_RNDU);
else if (param.logarithmic_scale_x == -1)
{
mpfr_set_d (temp, param.max_x, MPFR_RNDD);
mpfr_exp2 (temp, temp, MPFR_RNDD);
mpfr_neg (temp, temp, MPFR_RNDU);
}
else
{
mpfr_set_d (temp, param.min_x, MPFR_RNDD);
mpfr_exp2 (temp, temp, MPFR_RNDD);
}
/* We perturb x a little bit, in order to avoid trailing zeros that */
/* might change the behavior of algorithms. */
mpfr_const_pi (x, MPFR_RNDN);
mpfr_div_2ui (x, x, 7, MPFR_RNDN);
mpfr_add_ui (x, x, 1, MPFR_RNDN);
mpfr_mul (x, x, temp, MPFR_RNDN);
test = 1;
while (test)
{
mpfr_fprintf (output, "%e\t", mpfr_get_d (x, MPFR_RNDN));
mpfr_fprintf (output, "%Pu\t", (mpfr_prec_t)prec);
s.r = (mp_limb_t)mpfr_get_exp (x);
s.size = (mpfr_prec_t)prec;
s.align_xp = (mpfr_sgn (x) > 0)?1:2;
mpfr_set_prec (x2, (mpfr_prec_t)prec);
mpfr_set (x2, x, MPFR_RNDU);
s.xp = x2->_mpfr_d;
for (i=0; i<nb_functions; i++)
{
t[i] = speed_measure (param.speed_funcs[i], &s);
mpfr_fprintf (output, "%e\t", t[i]);
}
fprintf (output, "%d\n", 1 + find_best (t, nb_functions));
if (param.logarithmic_scale_x == 0)
{
mpfr_add (x, x, incr_x, MPFR_RNDU);
if (mpfr_cmp_d (x, param.max_x) > 0)
test=0;
}
else
{
if (mpfr_sgn (x) < 0 )
{ /* if x<0, it means that logarithmic_scale_x=-1 */
mpfr_div (x, x, incr_x, MPFR_RNDU);
mpfr_abs (temp, x, MPFR_RNDD);
mpfr_log2 (temp, temp, MPFR_RNDD);
if (mpfr_cmp_d (temp, param.min_x) < 0)
mpfr_neg (x, x, MPFR_RNDN);
}
else
{
mpfr_mul (x, x, incr_x, MPFR_RNDU);
mpfr_set (temp, x, MPFR_RNDD);
mpfr_log2 (temp, temp, MPFR_RNDD);
if (mpfr_cmp_d (temp, param.max_x) > 0)
test=0;
}
}
}
prec = ( (param.logarithmic_scale_prec) ? (prec * incr_prec)
: (prec + incr_prec) );
fprintf (output, "\n");
}
free (t);
mpfr_clear (incr_x);
mpfr_clear (x);
mpfr_clear (x2);
mpfr_clear (temp);
return;
}
#define SPEED_MPFR_FUNC_2D(mean_func) \
do \
{ \
double t; \
unsigned i; \
mpfr_t w, x; \
mp_size_t size; \
\
SPEED_RESTRICT_COND (s->size >= MPFR_PREC_MIN); \
SPEED_RESTRICT_COND (s->size <= MPFR_PREC_MAX); \
\
size = (s->size-1)/GMP_NUMB_BITS+1; \
s->xp[size-1] |= MPFR_LIMB_HIGHBIT; \
MPFR_TMP_INIT1 (s->xp, x, s->size); \
MPFR_SET_EXP (x, (mpfr_exp_t) s->r); \
if (s->align_xp == 2) MPFR_SET_NEG (x); \
\
mpfr_init2 (w, s->size); \
speed_starttime (); \
i = s->reps; \
\
do \
mean_func (w, x, MPFR_RNDN); \
while (--i != 0); \
t = speed_endtime (); \
\
mpfr_clear (w); \
return t; \
} \
while (0)
mpfr_prec_t mpfr_exp_2_threshold;
mpfr_prec_t old_threshold = MPFR_EXP_2_THRESHOLD;
#undef MPFR_EXP_2_THRESHOLD
#define MPFR_EXP_2_THRESHOLD mpfr_exp_2_threshold
#include "exp_2.c"
double
timing_exp1 (struct speed_params *s)
{
mpfr_exp_2_threshold = s->size+1;
SPEED_MPFR_FUNC_2D (mpfr_exp_2);
}
double
timing_exp2 (struct speed_params *s)
{
mpfr_exp_2_threshold = s->size-1;
SPEED_MPFR_FUNC_2D (mpfr_exp_2);
}
double
timing_exp3 (struct speed_params *s)
{
SPEED_MPFR_FUNC_2D (mpfr_exp_3);
}
#include "ai.c"
double
timing_ai1 (struct speed_params *s)
{
SPEED_MPFR_FUNC_2D (mpfr_ai1);
}
double
timing_ai2 (struct speed_params *s)
{
SPEED_MPFR_FUNC_2D (mpfr_ai2);
}
/* These functions are for testing purpose only */
/* They are used to draw which method is actually used */
double
virtual_timing_ai1 (struct speed_params *s)
{
double t;
unsigned i;
mpfr_t w, x;
mp_size_t size;
mpfr_t temp1, temp2;
SPEED_RESTRICT_COND (s->size >= MPFR_PREC_MIN);
SPEED_RESTRICT_COND (s->size <= MPFR_PREC_MAX);
size = (s->size-1)/GMP_NUMB_BITS+1;
s->xp[size-1] |= MPFR_LIMB_HIGHBIT;
MPFR_TMP_INIT1 (s->xp, x, s->size);
MPFR_SET_EXP (x, (mpfr_exp_t) s->r);
if (s->align_xp == 2) MPFR_SET_NEG (x);
mpfr_init2 (w, s->size);
speed_starttime ();
i = s->reps;
mpfr_init2 (temp1, MPFR_SMALL_PRECISION);
mpfr_init2 (temp2, MPFR_SMALL_PRECISION);
mpfr_set (temp1, x, MPFR_SMALL_PRECISION);
mpfr_set_si (temp2, MPFR_AI_THRESHOLD2, MPFR_RNDN);
mpfr_mul_ui (temp2, temp2, (unsigned int)MPFR_PREC (w), MPFR_RNDN);
if (MPFR_IS_NEG (x))
mpfr_mul_si (temp1, temp1, MPFR_AI_THRESHOLD1, MPFR_RNDN);
else
mpfr_mul_si (temp1, temp1, MPFR_AI_THRESHOLD3, MPFR_RNDN);
mpfr_add (temp1, temp1, temp2, MPFR_RNDN);
if (mpfr_cmp_si (temp1, MPFR_AI_SCALE) > 0)
t = 1000.;
else
t = 1.;
mpfr_clear (temp1);
mpfr_clear (temp2);
return t;
}
double
virtual_timing_ai2 (struct speed_params *s)
{
double t;
unsigned i;
mpfr_t w, x;
mp_size_t size;
mpfr_t temp1, temp2;
SPEED_RESTRICT_COND (s->size >= MPFR_PREC_MIN);
SPEED_RESTRICT_COND (s->size <= MPFR_PREC_MAX);
size = (s->size-1)/GMP_NUMB_BITS+1;
s->xp[size-1] |= MPFR_LIMB_HIGHBIT;
MPFR_TMP_INIT1 (s->xp, x, s->size);
MPFR_SET_EXP (x, (mpfr_exp_t) s->r);
if (s->align_xp == 2) MPFR_SET_NEG (x);
mpfr_init2 (w, s->size);
speed_starttime ();
i = s->reps;
mpfr_init2 (temp1, MPFR_SMALL_PRECISION);
mpfr_init2 (temp2, MPFR_SMALL_PRECISION);
mpfr_set (temp1, x, MPFR_SMALL_PRECISION);
mpfr_set_si (temp2, MPFR_AI_THRESHOLD2, MPFR_RNDN);
mpfr_mul_ui (temp2, temp2, (unsigned int)MPFR_PREC (w), MPFR_RNDN);
if (MPFR_IS_NEG (x))
mpfr_mul_si (temp1, temp1, MPFR_AI_THRESHOLD1, MPFR_RNDN);
else
mpfr_mul_si (temp1, temp1, MPFR_AI_THRESHOLD3, MPFR_RNDN);
mpfr_add (temp1, temp1, temp2, MPFR_RNDN);
if (mpfr_cmp_si (temp1, MPFR_AI_SCALE) > 0)
t = 1.;
else
t = 1000.;
mpfr_clear (temp1);
mpfr_clear (temp2);
return t;
}
int
main (void)
{
FILE *output;
struct speed_params2D param;
double (*speed_funcs[3]) (struct speed_params *s);
/* char filename[256] = "virtual_timing_ai.dat"; */
/* speed_funcs[0] = virtual_timing_ai1; */
/* speed_funcs[1] = virtual_timing_ai2; */
char filename[256] = "airy.dat";
speed_funcs[0] = timing_ai1;
speed_funcs[1] = timing_ai2;
speed_funcs[2] = NULL;
output = fopen (filename, "w");
if (output == NULL)
{
fprintf (stderr, "Can't open file '%s' for writing.\n", filename);
abort ();
}
param.min_x = -80;
param.max_x = 60;
param.min_prec = 50;
param.max_prec = 1500;
param.nb_points_x = 200;
param.nb_points_prec = 200;
param.logarithmic_scale_x = 0;
param.logarithmic_scale_prec = 0;
param.speed_funcs = speed_funcs;
generate_2D_sample (output, param);
fclose (output);
mpfr_free_cache ();
return 0;
}