-
Notifications
You must be signed in to change notification settings - Fork 26
/
python_augmentation.py
133 lines (115 loc) · 4.58 KB
/
python_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import SimpleITK as sitk
from PIL import Image
import numpy as np
import time
import matplotlib.pyplot as plt
from cuda_backend.py_api import Handle
import deform
Iters = 500
Iters_CPU = 10
np.set_printoptions(precision=3)
def check(correct, output):
'''
Unit Test Pass When less than 0.01 rate pixels loss ( > 0.001)
'''
assert(correct.shape == output.shape)
loss = np.abs(output - correct)
count = np.sum(loss > 1e-3)
max_loss = loss.max()
total = loss.reshape(-1).shape[0]
if count < 1e-2 * total:
print("Unit_test Successful Pass")
return True
else:
print("Unit_test Failed: Rate is {}, \n mean L1_loss is {} \n max L1_loss is {}".\
format(count / total, loss.mean(), loss.max()))
test = output == correct
import ipdb; ipdb.set_trace()
return False
def test_3D():
data_pth = 'data/FLAIR.nii.gz'
sitk_image = sitk.ReadImage(data_pth)
array_image = sitk.GetArrayFromImage(sitk_image).copy()
cuda_handle = Handle(array_image.shape, mode="mirror")
# cuda_handle.test()
# cuda_handle.scale(0.5)
# cuda_handle.flip(do_y=True, do_x=True, do_z=True)
# cuda_handle.translate(100, 100, 20)
# cuda_handle.rotate(0.75 * np.pi, 0.75 * np.pi, 0.75 * np.pi)
cuda_handle.elastic(sigma=5., alpha=200., mode='constant')
cuda_handle.end_flag()
# correct_ret = deform.spatial_augment(array_image, mode="mirror")
# Warm up and Unit test
for i in range(100):
output = cuda_handle.augment(array_image, order=1)
volOut=sitk.GetImageFromArray(output[0])
sitk.WriteImage( volOut,"data/FLAIR_Elastic.nii.gz", True)
import ipdb; ipdb.set_trace()
# check(correct_ret, output[0])
start = time.time()
for i in range(Iters):
output = cuda_handle.augment(array_image)
end = time.time()
print("Shape:{} Augmentation On CUDA Cost {}ms".format(array_image.shape, \
(end - start) * 1000 / Iters))
start = time.time()
for i in range(Iters_CPU):
correct_ret = deform.spatial_augment(array_image)
end = time.time()
print("Shape:{} Augmentation On CPU Cost {}ms".format(array_image.shape, \
(end - start) * 1000 / Iters_CPU))
def test_2D():
data_pth = 'data/Daenerys.jpg'
image = Image.open(data_pth)
array_image = np.array(image)
raw = array_image
array_image = array_image.transpose(2,0,1).astype(np.float32).copy()
cuda_handle = Handle(array_image.shape, RGB=True, mode='reflect')
# cuda_handle.scale(0.5)
# cuda_handle.flip(do_y=True)
# cuda_handle.translate(400, 400)
# cuda_handle.rotate(0.75 * np.pi)
cuda_handle.elastic(sigma=12., alpha=200., mode='constant')
cuda_handle.end_flag()
# if len(array_image.shape) == 2:
# correct_ret = deform.spatial_augment(array_image)
# else:
# correct_ret = np.zeros_like(array_image)
# for i in range(3):
# correct_ret[i] = deform.spatial_augment(array_image[i])
# Warm up and Unit test
for i in range(100):
output = cuda_handle.augment(array_image)
# import ipdb; ipdb.set_trace()
# check(correct_ret, output[0])
# Save Image
name, image_type = data_pth.split('.')
for item in output[1]:
name += '_' + item
output_pth = name + '.' + image_type
out = Image.fromarray(output[0].transpose(1, 2, 0), mode=image.mode)
out = Image.fromarray(output[0].transpose(1, 2, 0).\
astype(raw.dtype), mode=image.mode)
out.save(output_pth)
# import ipdb; ipdb.set_trace()
# Test Time
start = time.time()
for i in range(Iters):
output = cuda_handle.augment(array_image)
end = time.time()
print("Shape:{} Augmentation On CUDA Cost {}ms".format(array_image.shape, \
(end - start) * 1000 / Iters))
# start = time.time()
# for i in range(Iters_CPU):
# if len(array_image.shape) == 2:
# correct_ret = deform.spatial_augment(array_image)
# else:
# correct_ret = np.zeros_like(array_image)
# for i in range(3):
# correct_ret[i] = deform.spatial_augment(array_image[i])
# end = time.time()
# print("Shape:{} Augmentation On CPU Cost {}ms".format(array_image.shape, \
# (end - start) * 1000 / Iters_CPU))
if __name__ == "__main__":
test_3D()
# test_2D()