From 33eb843bb60b9f0f9b57faf9d9daddbf8697fb34 Mon Sep 17 00:00:00 2001 From: quantylab Date: Thu, 12 Mar 2020 18:19:36 +0900 Subject: [PATCH] =?UTF-8?q?=EC=BD=94=EB=93=9C=20=EC=A0=95=EB=A6=AC?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- learners.py | 128 +++++++++++++++++++++++----------------------------- networks.py | 1 - 2 files changed, 56 insertions(+), 73 deletions(-) diff --git a/learners.py b/learners.py index 0804349..09ff978 100644 --- a/learners.py +++ b/learners.py @@ -14,7 +14,6 @@ class ReinforcementLearner: __metaclass__ = abc.ABCMeta - lock = threading.Lock() def __init__(self, rl_method='rl', stock_code=None, chart_data=None, training_data=None, @@ -72,8 +71,7 @@ def __init__(self, rl_method='rl', stock_code=None, self.itr_cnt = 0 self.exploration_cnt = 0 self.batch_size = 0 - self.pos_learning_cnt = 0 - self.neg_learning_cnt = 0 + self.learning_cnt = 0 # 로그 등 출력 경로 self.output_path = output_path @@ -155,8 +153,48 @@ def reset(self): self.itr_cnt = 0 self.exploration_cnt = 0 self.batch_size = 0 - self.pos_learning_cnt = 0 - self.neg_learning_cnt = 0 + self.learning_cnt = 0 + + def build_sample(self): + self.environment.observe() + if len(self.training_data) > self.training_data_idx + 1: + self.training_data_idx += 1 + self.sample = self.training_data.iloc[ + self.training_data_idx].tolist() + self.sample.extend(self.agent.get_states()) + return self.sample + return None + + @abc.abstractmethod + def get_batch(self, batch_size, delayed_reward, discount_factor): + pass + + def update_networks(self, + batch_size, delayed_reward, discount_factor): + # 배치 학습 데이터 생성 + x, y_value, y_policy = self.get_batch( + batch_size, delayed_reward, discount_factor) + if len(x) > 0: + loss = 0 + if y_value is not None: + # 가치 신경망 갱신 + loss += self.value_network.train_on_batch(x, y_value) + if y_policy is not None: + # 정책 신경망 갱신 + loss += self.policy_network.train_on_batch(x, y_policy) + return loss + return None + + def fit(self, delayed_reward, discount_factor): + # 배치 학습 데이터 생성 및 신경망 갱신 + if self.batch_size > 0: + _loss = self.update_networks( + self.batch_size, delayed_reward, discount_factor) + if _loss is not None: + self.loss += abs(_loss) + self.learning_cnt += 1 + self.memory_learning_idx.append(self.training_data_idx) + self.batch_size = 0 def visualize(self, epoch_str, num_epoches, epsilon): self.memory_action = [Agent.ACTION_HOLD] \ @@ -190,20 +228,6 @@ def visualize(self, epoch_str, num_epoches, epsilon): 'epoch_summary_{}.png'.format(epoch_str)) ) - def fit(self, delayed_reward, discount_factor): - # 배치 학습 데이터 생성 및 신경망 갱신 - if self.batch_size > 0: - _loss = self.update_networks( - self.batch_size, delayed_reward, discount_factor) - if _loss is not None: - self.loss += abs(_loss) - if delayed_reward > 0: - self.pos_learning_cnt += 1 - else: - self.neg_learning_cnt += 1 - self.memory_learning_idx.append(self.training_data_idx) - self.batch_size = 0 - def run( self, num_epoches=100, balance=10000000, discount_factor=0.9, start_epsilon=0.5, learning=True): @@ -267,7 +291,7 @@ def run( if next_sample is None: break - # n_step만큼 샘플 저장 + # num_steps만큼 샘플 저장 q_sample.append(next_sample) if len(q_sample) < self.num_steps: continue @@ -322,22 +346,18 @@ def run( epoch_str = str(epoch + 1).rjust(num_epoches_digit, '0') time_end_epoch = time.time() elapsed_time_epoch = time_end_epoch - time_start_epoch - if self.pos_learning_cnt + self.neg_learning_cnt > 0: - self.loss /= self.pos_learning_cnt \ - + self.neg_learning_cnt - with self.lock: - logging.info("[{}][Epoch {}/{}] Epsilon:{:.4f} " - "#Expl.:{}/{} #Buy:{} #Sell:{} #Hold:{} " - "#Stocks:{} PV:{:,.0f} " - "POS:{} NEG:{} Loss:{:.6f} ET:{:.4f}".format( - self.stock_code, epoch_str, - num_epoches, epsilon, - self.exploration_cnt, self.itr_cnt, - self.agent.num_buy, self.agent.num_sell, - self.agent.num_hold, self.agent.num_stocks, - self.agent.portfolio_value, - self.pos_learning_cnt, self.neg_learning_cnt, - self.loss, elapsed_time_epoch)) + if self.learning_cnt > 0: + self.loss /= self.learning_cnt + logging.info("[{}][Epoch {}/{}] Epsilon:{:.4f} " + "#Expl.:{}/{} #Buy:{} #Sell:{} #Hold:{} " + "#Stocks:{} PV:{:,.0f} " + "LC:{} Loss:{:.6f} ET:{:.4f}".format( + self.stock_code, epoch_str, num_epoches, epsilon, + self.exploration_cnt, self.itr_cnt, + self.agent.num_buy, self.agent.num_sell, + self.agent.num_hold, self.agent.num_stocks, + self.agent.portfolio_value, self.learning_cnt, + self.loss, elapsed_time_epoch)) # 에포크 관련 정보 가시화 self.visualize(epoch_str, num_epoches, epsilon) @@ -359,42 +379,6 @@ def run( code=self.stock_code, elapsed_time=elapsed_time, max_pv=max_portfolio_value, cnt_win=epoch_win_cnt)) - def build_sample(self): - self.environment.observe() - if len(self.training_data) > self.training_data_idx + 1: - self.training_data_idx += 1 - self.sample = self.training_data.iloc[ - self.training_data_idx].tolist() - self.sample.extend(self.agent.get_states()) - return self.sample - return None - - def get_action_network(self): - if self.policy_network is not None: - return self.policy_network - else: - return self.value_network - - @abc.abstractmethod - def get_batch(self, batch_size, delayed_reward, discount_factor): - pass - - def update_networks(self, - batch_size, delayed_reward, discount_factor): - # 배치 학습 데이터 생성 - x, y_value, y_policy = self.get_batch( - batch_size, delayed_reward, discount_factor) - if len(x) > 0: - loss = 0 - if y_value is not None: - # 가치 신경망 갱신 - loss += self.value_network.train_on_batch(x, y_value) - if y_policy is not None: - # 정책 신경망 갱신 - loss += self.policy_network.train_on_batch(x, y_policy) - return loss - return None - def save_models(self): if self.value_network is not None and \ self.value_network_path is not None: diff --git a/networks.py b/networks.py index 20f69be..c29b9ba 100644 --- a/networks.py +++ b/networks.py @@ -48,7 +48,6 @@ def __init__(self, input_dim=0, output_dim=0, lr=0.001, self.loss = loss self.model = None - def predict(self, sample): with self.lock: with graph.as_default():