Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bad prediction result using EfficientNet #152

Open
mhmdghazal opened this issue May 12, 2022 · 0 comments
Open

Bad prediction result using EfficientNet #152

mhmdghazal opened this issue May 12, 2022 · 0 comments

Comments

@mhmdghazal
Copy link

Kindly, I used EfficientNet B7 to classify face mask images with 2 classes, (Mask , No Mask) but the problem is with prediction from live video, the code of the training the model is shown below:

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import EfficientNetB7
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.applications.efficientnet import preprocess_input

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import itertools
import random
import os
import cv2

from sklearn import metrics
from pathlib import Path

target_size = (224,224)
batch_size = 8
lr = 0.01
n_epochs = 4

#root_dir = os.path.dirname(os.path.abspath(os.curdir))
data_dir = r"C:\Users\admin\Desktop\b7\a\dataset"

train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
train_generator = train_datagen.flow_from_directory(str(r"C:\Users\admin\Desktop\b7\a\dataset\train"),
target_size=target_size,
batch_size=batch_size,
class_mode='binary',
classes=['with_mask', 'without_mask'],
shuffle=True)

val_datagen_artificial = ImageDataGenerator(preprocessing_function=preprocess_input)
val_generator_artificial = val_datagen_artificial.flow_from_directory(str(r"C:\Users\admin\Desktop\b7\a\dataset\validation"),
target_size=target_size,
batch_size=batch_size,
class_mode='binary',
classes=['with_mask', 'without_mask'],
shuffle=False)

base_model = EfficientNetB7(weights='imagenet',include_top=False, input_shape=(target_size[0],target_size[1],3))

x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128,activation='relu')(x)
preds = Dense(1,activation='sigmoid')(x)

model = Model(inputs=base_model.input,outputs=preds)

for layer in model.layers[:-4]:
layer.trainable = False

opt = tf.keras.optimizers.Adam(learning_rate=lr)
model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['accuracy'])
step_size_train = train_generator.n//train_generator.batch_size
step_size_val = val_generator_artificial.n//val_generator_artificial.batch_size

model.fit_generator(generator=train_generator, steps_per_epoch=step_size_train, epochs=n_epochs, validation_data=val_generator_artificial, validation_steps=step_size_val)

429/429 [==============================] - 911s 2s/step - loss: 0.0773 - accuracy: 0.9834 - val_loss: 0.0150 - val_accuracy: 0.9950
Epoch 2/4
429/429 [==============================] - 876s 2s/step - loss: 0.0422 - accuracy: 0.9927 - val_loss: 0.0569 - val_accuracy: 0.9875
Epoch 3/4
429/429 [==============================] - 874s 2s/step - loss: 0.0072 - accuracy: 0.9983 - val_loss: 0.0090 - val_accuracy: 0.9950
Epoch 4/4
429/429 [==============================] - 870s 2s/step - loss: 0.0283 - accuracy: 0.9948 - val_loss: 3.0768e-04 - val_accuracy: 1.0000
<keras.callbacks.History at 0x2534bdfdb80>

model.save("mask.model", save_format="h5")

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant