You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Kindly, I used EfficientNet B7 to classify face mask images with 2 classes, (Mask , No Mask) but the problem is with prediction from live video, the code of the training the model is shown below:
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import EfficientNetB7
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.applications.efficientnet import preprocess_input
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import itertools
import random
import os
import cv2
from sklearn import metrics
from pathlib import Path
Kindly, I used EfficientNet B7 to classify face mask images with 2 classes, (Mask , No Mask) but the problem is with prediction from live video, the code of the training the model is shown below:
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import EfficientNetB7
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.applications.efficientnet import preprocess_input
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import itertools
import random
import os
import cv2
from sklearn import metrics
from pathlib import Path
target_size = (224,224)
batch_size = 8
lr = 0.01
n_epochs = 4
#root_dir = os.path.dirname(os.path.abspath(os.curdir))
data_dir = r"C:\Users\admin\Desktop\b7\a\dataset"
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
train_generator = train_datagen.flow_from_directory(str(r"C:\Users\admin\Desktop\b7\a\dataset\train"),
target_size=target_size,
batch_size=batch_size,
class_mode='binary',
classes=['with_mask', 'without_mask'],
shuffle=True)
val_datagen_artificial = ImageDataGenerator(preprocessing_function=preprocess_input)
val_generator_artificial = val_datagen_artificial.flow_from_directory(str(r"C:\Users\admin\Desktop\b7\a\dataset\validation"),
target_size=target_size,
batch_size=batch_size,
class_mode='binary',
classes=['with_mask', 'without_mask'],
shuffle=False)
base_model = EfficientNetB7(weights='imagenet',include_top=False, input_shape=(target_size[0],target_size[1],3))
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128,activation='relu')(x)
preds = Dense(1,activation='sigmoid')(x)
model = Model(inputs=base_model.input,outputs=preds)
for layer in model.layers[:-4]:
layer.trainable = False
opt = tf.keras.optimizers.Adam(learning_rate=lr)
model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['accuracy'])
step_size_train = train_generator.n//train_generator.batch_size
step_size_val = val_generator_artificial.n//val_generator_artificial.batch_size
model.fit_generator(generator=train_generator, steps_per_epoch=step_size_train, epochs=n_epochs, validation_data=val_generator_artificial, validation_steps=step_size_val)
429/429 [==============================] - 911s 2s/step - loss: 0.0773 - accuracy: 0.9834 - val_loss: 0.0150 - val_accuracy: 0.9950
Epoch 2/4
429/429 [==============================] - 876s 2s/step - loss: 0.0422 - accuracy: 0.9927 - val_loss: 0.0569 - val_accuracy: 0.9875
Epoch 3/4
429/429 [==============================] - 874s 2s/step - loss: 0.0072 - accuracy: 0.9983 - val_loss: 0.0090 - val_accuracy: 0.9950
Epoch 4/4
429/429 [==============================] - 870s 2s/step - loss: 0.0283 - accuracy: 0.9948 - val_loss: 3.0768e-04 - val_accuracy: 1.0000
<keras.callbacks.History at 0x2534bdfdb80>
model.save("mask.model", save_format="h5")
The text was updated successfully, but these errors were encountered: