-
Notifications
You must be signed in to change notification settings - Fork 458
/
gptq.py
236 lines (186 loc) · 7.51 KB
/
gptq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import math
import time
import torch
import torch.nn as nn
import transformers
import quant
from texttable import Texttable
from utils import torch_snr_error
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
class Observer:
def __init__(self, topk=32):
self.loss_list = []
self.topk = topk
def submit(self, name: str, layerid: int, gptq, error: float):
item = (name, layerid, {'gptq': gptq, 'error': error})
if len(self.loss_list) < self.topk:
self.loss_list.append(item)
return
min_error = error
min_idx = -1
for idx, data in enumerate(self.loss_list):
if min_error > data[2]['error']:
min_idx = idx
min_error = data[2]['error']
if min_idx >= 0:
self.loss_list[min_idx] = item
def print(self):
self.loss_list = sorted(self.loss_list, key=lambda s: s[2]['error'], reverse=True)
table = Texttable()
table.header(['name', 'error'])
table.set_cols_dtype(['t', 'f'])
for item in self.loss_list:
table.add_row([f"{item[0]}.{item[1]}", item[2]['error']])
print(table.draw())
print('\n')
def items(self):
return self.loss_list
class GPTQ:
def __init__(self, layer, observe=False):
self.layer = layer
self.dev = self.layer.weight.device
W = layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
self.rows = W.shape[0]
self.columns = W.shape[1]
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
self.nsamples = 0
self.quantizer = quant.Quantizer()
self.observe = observe
def add_batch(self, inp, out):
# Hessian H = 2 X XT + λ I
if self.observe:
self.inp1 = inp
self.out1 = out
else:
self.inp1 = None
self.out1 = None
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D):
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
if isinstance(self.layer, nn.Conv2d):
unfold = nn.Unfold(self.layer.kernel_size, dilation=self.layer.dilation, padding=self.layer.padding, stride=self.layer.stride)
inp = unfold(inp)
inp = inp.permute([1, 0, 2])
inp = inp.flatten(1)
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
# inp = inp.float()
inp = math.sqrt(2 / self.nsamples) * inp.float()
# self.H += 2 / self.nsamples * inp.matmul(inp.t())
self.H += inp.matmul(inp.t())
def print_loss(self, name, q_weight, weight_error, timecost):
table = Texttable()
name += ' ' * (16 - len(name))
table.header(['name', 'weight_error', 'fp_inp_SNR', 'q_inp_SNR', 'time'])
# assign weight
self.layer.weight.data = q_weight.reshape(self.layer.weight.shape).to(self.layer.weight.data.dtype)
if self.inp1 is not None:
# quantize input to int8
quantizer = quant.Quantizer()
quantizer.configure(8, perchannel=False, sym=True, mse=False)
quantizer.find_params(self.inp1)
q_in = quantizer.quantize(self.inp1).type(torch.float16)
q_out = self.layer(q_in)
# get kinds of SNR
q_SNR = torch_snr_error(q_out, self.out1).item()
fp_SNR = torch_snr_error(self.layer(self.inp1), self.out1).item()
else:
q_SNR = '-'
fp_SNR = '-'
table.add_row([name, weight_error, fp_SNR, q_SNR, timecost])
print(table.draw().split('\n')[-2])
def fasterquant(self, blocksize=128, percdamp=.01, groupsize=-1, actorder=False, name=''):
self.layer.to(self.dev)
W = self.layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
W = W.float()
tick = time.time()
if not self.quantizer.ready():
self.quantizer.find_params(W, weight=True)
H = self.H
if not self.observe:
del self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
if actorder:
perm = torch.argsort(torch.diag(H), descending=True)
W = W[:, perm]
H = H[perm][:, perm]
Losses = torch.zeros_like(W)
Q = torch.zeros_like(W)
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
g_idx = []
scale = []
zero = []
now_idx = 1
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if groupsize != -1:
if (i1 + i) % groupsize == 0:
self.quantizer.find_params(W[:, (i1 + i):(i1 + i + groupsize)], weight=True)
if ((i1 + i) // groupsize) - now_idx == -1:
scale.append(self.quantizer.scale)
zero.append(self.quantizer.zero)
now_idx += 1
q = self.quantizer.quantize(w.unsqueeze(1)).flatten()
Q1[:, i] = q
Losses1[:, i] = (w - q)**2 / d**2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
Q[:, i1:i2] = Q1
Losses[:, i1:i2] = Losses1 / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
torch.cuda.synchronize()
error = torch.sum(Losses).item()
groupsize = groupsize if groupsize != -1 else self.columns
g_idx = [i // groupsize for i in range(self.columns)]
g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device)
if actorder:
invperm = torch.argsort(perm)
Q = Q[:, invperm]
g_idx = g_idx[invperm]
if isinstance(self.layer, transformers.Conv1D):
Q = Q.t()
self.print_loss(name=name, q_weight=Q, weight_error=error, timecost=(time.time() - tick))
if scale == []:
scale.append(self.quantizer.scale)
zero.append(self.quantizer.zero)
scale = torch.cat(scale, dim=1)
zero = torch.cat(zero, dim=1)
return scale, zero, g_idx, error
def free(self):
self.inp1 = None
self.out1 = None
self.H = None
self.Losses = None
self.Trace = None
torch.cuda.empty_cache()