-
Notifications
You must be signed in to change notification settings - Fork 10
/
net.py
100 lines (97 loc) · 4.74 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# -*- coding: utf-8 -*-
import sys
import math
import random
import numpy
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F
import torch.autograd as autograd
import torchvision.transforms as T
import torch.optim as optim
from conf import *
use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor
Tensor = FloatTensor
class Network(nn.Module):
def __init__(self, embedding_size, embedding_dimention, embedding_matrix, hidden_dimention, output_dimention):
super(Network,self).__init__()
self.embedding_layer = nn.Embedding(embedding_size,embedding_dimention)
self.embedding_layer.weight.data.copy_(torch.from_numpy(embedding_matrix))
self.inpt_layer_zp_pre = nn.Linear(embedding_dimention,hidden_dimention)
self.hidden_layer_zp_pre = nn.Linear(hidden_dimention,hidden_dimention)
self.inpt_layer_zp_post = nn.Linear(embedding_dimention,hidden_dimention)
self.hidden_layer_zp_post = nn.Linear(hidden_dimention,hidden_dimention)
self.inpt_layer_np = nn.Linear(embedding_dimention,hidden_dimention)
self.hidden_layer_np = nn.Linear(hidden_dimention,hidden_dimention)
self.inpt_layer_nps = nn.Linear(hidden_dimention,hidden_dimention)
self.hidden_layer_nps = nn.Linear(hidden_dimention,hidden_dimention)
nh = hidden_dimention*2
self.zp_pre_layer = nn.Linear(hidden_dimention,nh)
self.zp_post_layer = nn.Linear(hidden_dimention,nh)
self.np_layer = nn.Linear(hidden_dimention,nh)
self.nps_layer = nn.Linear(hidden_dimention*2,nh)
self.feature_layer = nn.Linear(61,nh)
self.representation_hidden_layer = nn.Linear(hidden_dimention*2,hidden_dimention*2)
self.output_layer = nn.Linear(hidden_dimention*2,output_dimention)
self.hidden_size = hidden_dimention
self.activate = nn.Tanh()
self.softmax_layer = nn.Softmax()
def forward_zp_pre(self, word_index, hiden_layer,dropout=0.0):
dropout_layer = nn.Dropout(dropout)
word_embedding = self.embedding_layer(word_index)
word_embedding = dropout_layer(word_embedding)
this_hidden = self.inpt_layer_zp_pre(word_embedding) + self.hidden_layer_zp_pre(hiden_layer)
this_hidden = self.activate(this_hidden)
this_hidden = dropout_layer(this_hidden)
return this_hidden
def forward_zp_post(self, word_index, hiden_layer,dropout=0.0):
dropout_layer = nn.Dropout(dropout)
word_embedding = self.embedding_layer(word_index)
this_hidden = self.inpt_layer_zp_post(word_embedding) + self.hidden_layer_zp_post(hiden_layer)
this_hidden = self.activate(this_hidden)
this_hidden = dropout_layer(this_hidden)
return this_hidden
def forward_np(self, word_index, hiden_layer,dropout=0.0):
dropout_layer = nn.Dropout(dropout)
word_embedding = self.embedding_layer(word_index)
this_hidden = self.inpt_layer_np(word_embedding) + self.hidden_layer_np(hiden_layer)
this_hidden = self.activate(this_hidden)
this_hidden = dropout_layer(this_hidden)
return this_hidden
def forward_nps(self, inpt, hiden_layer,dropout=0.0):
dropout_layer = nn.Dropout(dropout)
this_hidden = self.inpt_layer_nps(inpt) + self.hidden_layer_np(hiden_layer)
this_hidden = self.activate(this_hidden)
this_hidden = dropout_layer(this_hidden)
return this_hidden
def generate_score(self,zp_pre,zp_post,np,feature,dropout=0.0):
dropout_layer = nn.Dropout(dropout)
x = self.zp_pre_layer(zp_pre) + self.zp_post_layer(zp_post) + self.np_layer(np)\
+ self.feature_layer(feature)
x = self.activate(x)
x = dropout_layer(x)
x = self.representation_hidden_layer(x)
x = self.activate(x)
x = dropout_layer(x)
x = self.output_layer(x)
xs = F.softmax(x)
return x,xs
def generate_scores(self,zp_pre,zp_post,np,nps,feature,dropout=0.0):
dropout_layer = nn.Dropout(dropout)
x = self.zp_pre_layer(zp_pre) + self.zp_post_layer(zp_post) + self.np_layer(np) + self.nps_layer(nps)\
+ self.feature_layer(feature)
x = self.activate(x)
x = dropout_layer(x)
x = self.representation_hidden_layer(x)
x = self.activate(x)
x = dropout_layer(x)
x = self.output_layer(x)
xs = F.softmax(x)
return x,xs
def initHidden(self,batch=1):
return autograd.Variable(torch.from_numpy(numpy.zeros((batch, self.hidden_size))).type(torch.cuda.FloatTensor))