diff --git a/R/variogramST.R b/R/variogramST.R index 9ba1699..f00a127 100644 --- a/R/variogramST.R +++ b/R/variogramST.R @@ -234,7 +234,8 @@ variogramST.STIDF <- function (formula, data, tlags, cutoff, tmpInd[,1] <- ind %% nData # row number tmpInd[,2] <- (ind %/% nData)+1 # col number if (cores == 1){ - tmpInd[,3] <- apply(tmpInd[,1:2,drop=FALSE], 1, function(x) spDists(data@sp[x[1]], data@sp[x[2]+x[1],])) + # tmpInd[,3] <- apply(tmpInd[,1:2,drop=FALSE], 1, function(x) spDists(data@sp[x[1]], data@sp[x[2]+x[1],])) + tmpInd[,3] <- spDists(data@sp[tmpInd[,1]], data@sp[tmpInd[,2]+tmpInd[,1], ], diagonal = TRUE) } else { if(!requireNamespace("future", quietly = TRUE) || !requireNamespace("future.apply", quietly = TRUE)) stop("For parallelization, future and future.apply packages are required") @@ -255,7 +256,7 @@ variogramST.STIDF <- function (formula, data, tlags, cutoff, indSp <- cbind(ind[indSp] %% nData, (ind[indSp] %/% nData)+1) np[j,i] <- nrow(indSp) # Issue #7, Thanks to Roelof. - gamma[j,i] <- 0.5*mean((data[,,colnames(m)[1]]@data[indSp[,1],1] - data[,,colnames(m)[1]]@data[indSp[,1]+indSp[,2],1])^2, + gamma[j,i] <- 0.5*mean((data[,,colnames(m)[1]]@data[indSp[,1],1,drop=TRUE] - data[,,colnames(m)[1]]@data[indSp[,1]+indSp[,2],1,drop=TRUE])^2, na.rm=TRUE) } if(progress)