-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodel_arch.py
384 lines (316 loc) · 15.2 KB
/
model_arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
from torch.autograd import Variable
from torch.optim import lr_scheduler
import functools, os
import numpy as np
import json
from metric import Metric
basic = 3
# TPCH
from dataset.postgres_tpch_dataset.tpch_utils import tpch_dim_dict
# Terrier
with open('dataset/terrier_tpch_dataset/input_dim_dict.json', 'r') as f:
terrier_dim_dict = json.load(f)
# TPCC
with open('./dataset/oltp_dataset/tpcc_dim_dict.json', 'r') as f:
tpcc_dim_dict = json.load(f)
# For computing loss
def squared_diff(output, target):
return torch.sum((output - target)**2)
###############################################################################
# Operator Neural Unit Architecture #
###############################################################################
# Neural Unit that covers all operators
class NeuralUnit(nn.Module):
"""Define a Resnet block"""
def __init__(self, node_type, dim_dict, num_layers=5, hidden_size=128,
output_size=32, norm_enabled=False):
"""
Initialize the InternalUnit
"""
super(NeuralUnit, self).__init__()
self.node_type = node_type
self.dense_block = self.build_block(num_layers, hidden_size, output_size,
input_dim = dim_dict[node_type])
def build_block(self, num_layers, hidden_size, output_size, input_dim):
"""Construct a block consisting of linear Dense layers.
Parameters:
num_layers (int)
hidden_size (int) -- the number of channels in the conv layer.
output_size (int) -- size of the output layer
input_dim (int) -- input size, depends on each node_type
norm_layer -- normalization layer
Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
"""
assert(num_layers >= 2)
dense_block = [nn.Linear(input_dim, hidden_size), nn.ReLU()]
for i in range(num_layers - 2):
dense_block += [nn.Linear(hidden_size, hidden_size), nn.ReLU()]
dense_block += [nn.Linear(hidden_size, output_size), nn.ReLU()]
for layer in dense_block:
try:
nn.init.xavier_uniform_(layer.weight)
except:
pass
return nn.Sequential(*dense_block)
def forward(self, x):
""" Forward function """
out = self.dense_block(x)
return out
###############################################################################
# QPP Net Architecture #
###############################################################################
class QPPNet():
def __init__(self, opt):
self.device = torch.device('cuda:0') if torch.cuda.is_available() \
else torch.device('cpu:0')
self.save_dir = opt.save_dir
self.test = False
self.test_time = opt.test_time
self.batch_size = opt.batch_size
self.dataset = opt.dataset
if opt.dataset == "PSQLTPCH":
self.dim_dict = tpch_dim_dict
elif opt.dataset == "TerrierTPCH":
self.dim_dict = terrier_dim_dict
else:
self.dim_dict = tpcc_dim_dict
self.last_total_loss = None
self.last_pred_err = None
self.pred_err = None
self.rq = 0
self.last_rq = 0
if not os.path.exists(self.save_dir):
os.mkdir(self.save_dir)
# Initialize the neural units
self.units = {}
self.optimizers, self.schedulers = {}, {}
self.best = 100000
for operator in self.dim_dict:
self.units[operator] = NeuralUnit(operator, self.dim_dict).to(self.device)
if opt.SGD:
optimizer = torch.optim.SGD(self.units[operator].parameters(),
lr=opt.lr, momentum=0.9)
else:
optimizer = torch.optim.Adam(self.units[operator].parameters(),
opt.lr) #opt.lr
if opt.scheduler:
sc = lr_scheduler.StepLR(optimizer, step_size=opt.step_size,
gamma=opt.gamma)
self.schedulers[operator] = sc
self.optimizers[operator] = optimizer
self.loss_fn = squared_diff
# Initialize the global loss accumulator dict
self.dummy = torch.zeros(1).to(self.device)
self.acc_loss = {operator: [self.dummy] for operator in self.dim_dict}
self.curr_losses = {operator: 0 for operator in self.dim_dict}
self.total_loss = None
self._test_losses = dict()
if opt.start_epoch > 0 or opt.test_time:
self.load(opt.start_epoch)
def set_input(self, samp_dicts):
self.input = samp_dicts
def _forward_oneQ_batch(self, samp_batch):
'''
Calcuates the loss for a batch of queries from one query template
compute a dictionary of losses for each operator
return output_vec, where 1st col is predicted time
'''
# print(samp_batch)
feat_vec = samp_batch['feat_vec']
# print(samp_batch['real_node_type'])
# print(samp_batch['node_type'])
# print(feat_vec.shape, print(samp_batch['children_plan']))
input_vec = torch.from_numpy(feat_vec).to(self.device)
# print(samp_batch['node_type'], input_vec)
subplans_time = []
for child_plan_dict in samp_batch['children_plan']:
child_output_vec, _ = self._forward_oneQ_batch(child_plan_dict)
if not child_plan_dict['is_subplan']:
input_vec = torch.cat((input_vec, child_output_vec),axis=1)
# first dim is subbatch_size
else:
subplans_time.append(torch.index_select(child_output_vec, 1, torch.zeros(1, dtype=torch.long)))
expected_len = self.dim_dict[samp_batch['node_type']]
if expected_len > input_vec.size()[1]:
add_on = torch.zeros(input_vec.size()[0], expected_len - input_vec.size()[1])
print(samp_batch['real_node_type'], input_vec.shape, expected_len)
input_vec = torch.cat((input_vec, add_on), axis=1)
# print(samp_batch['node_type'], input_vec)
output_vec = self.units[samp_batch['node_type']](input_vec)
# print(output_vec.shape)
pred_time = torch.index_select(output_vec, 1, torch.zeros(1, dtype=torch.long))
# pred_time assumed to be the first col
cat_res = torch.cat([pred_time] + subplans_time, axis=1)
# print("cat_res.shape", cat_res.shape)
pred_time = torch.sum(cat_res, 1)
# print("pred_time.shape", pred_time.shape)
# if self.test_time:
# print(samp_batch['node_type'], pred_time, samp_batch['total_time'])
loss = (pred_time -
torch.from_numpy(samp_batch['total_time']).to(self.device)) ** 2
# print("loss.shape", loss.shape)
self.acc_loss[samp_batch['node_type']].append(loss)
# added to deal with NaN
try:
assert(not (torch.isnan(output_vec).any()))
except:
print("feat_vec", feat_vec, "input_vec", input_vec)
if torch.cuda.is_available():
print(samp_batch['node_type'], "output_vec: ", output_vec,
self.units[samp_batch['node_type']].module.cpu().state_dict())
else:
print(samp_batch['node_type'], "output_vec: ", output_vec,
self.units[samp_batch['node_type']].cpu().state_dict())
exit(-1)
return output_vec, pred_time
def _forward(self, epoch):
# self.input is a list of preprocessed plan_vec_dict
total_loss = torch.zeros(1).to(self.device)
total_losses = {operator: [torch.zeros(1).to(self.device)] \
for operator in self.dim_dict}
if self.test:
test_loss = []
pred_err = []
all_tt, all_pred_time = None, None
data_size = 0
total_mean_mae = torch.zeros(1).to(self.device)
for idx, samp_dict in enumerate(self.input):
# first clear prev computed losses
del self.acc_loss
self.acc_loss = {operator: [self.dummy] for operator in self.dim_dict}
_, pred_time = self._forward_oneQ_batch(samp_dict)
if self.dataset == "PSQLTPCH":
epsilon = torch.finfo(pred_time.dtype).eps
else:
epsilon = 0.001
data_size += len(samp_dict['total_time'])
# if idx == 6:
# print("feat_vec", samp_dict["feat_vec"])
if self.test:
tt = torch.from_numpy(samp_dict['total_time']).to(self.device)
test_loss.append(torch.abs(tt - pred_time))
curr_pred_err = Metric.pred_err(tt, pred_time, epsilon)
pred_err.append(curr_pred_err)
# if idx == 6 or \
# print(samp_dict['feat_vec'])
if np.isnan(curr_pred_err.detach()).any() or \
np.isinf(curr_pred_err.detach()).any():
print("feat_vec", samp_dict['feat_vec'])
print("pred_time", pred_time)
print("total_time", tt)
all_tt = tt if all_tt is None else torch.cat([tt, all_tt])
all_pred_time = pred_time if all_pred_time is None \
else torch.cat([pred_time, all_pred_time])
# if idx in self._test_losses and self._test_losses[idx] == curr_rq:
# print(f"^^^^^^^^^^^^^^^^^^{samp_dict['node_type']} ^^^^^^^^^^^^^^^\n",
# pred_time, '\n', tt, '\n')
# # samp_dict['feat_vec'], '\n')
# layer = self.units[samp_dict['node_type']].dense_block[0]
# print(type(layer), layer.weight.grad)
# for layer in self.units[samp_dict['node_type']].dense_block:
# try:
# print(type(layer), layer.weight.grad)
# except:
# assert(isinstance(layer, nn.ReLU) or isinstance(layer, nn.Tanh))
# self._test_losses[idx] = curr_rq
curr_rq = Metric.r_q(tt, pred_time, epsilon)
curr_mean_mae = Metric.mean_mae(tt, pred_time, epsilon)
total_mean_mae += curr_mean_mae * len(tt)
if epoch % 50 == 0:
print("####### eval by temp: idx {}, test_loss {}, pred_err {}, "\
"rq {}, weighted mae {}, accumulate_err {} "\
.format(idx, torch.mean(torch.abs(tt - pred_time)).item(),
torch.mean(curr_pred_err).item(),
curr_rq, curr_mean_mae,
Metric.accumulate_err(tt, pred_time, epsilon)))
D_size = 0
subbatch_loss = torch.zeros(1).to(self.device)
for operator in self.acc_loss:
#print(operator, self.acc_loss[operator])
all_loss = torch.cat(self.acc_loss[operator])
D_size += all_loss.shape[0]
#print("all_loss.shape",all_loss.shape)
subbatch_loss += torch.sum(all_loss)
total_losses[operator].append(all_loss)
subbatch_loss = torch.mean(torch.sqrt(subbatch_loss / D_size))
#print("subbatch_loss.shape",subbatch_loss.shape)
total_loss += subbatch_loss * samp_dict['subbatch_size']
if self.test:
all_test_loss = torch.cat(test_loss)
#print(test_loss[0].shape, test_loss[1].shape, all_test_loss.shape)
all_test_loss = torch.mean(all_test_loss)
self.test_loss = all_test_loss
all_pred_err = torch.cat(pred_err)
self.pred_err = torch.mean(all_pred_err)
self.rq = Metric.r_q(all_tt, all_pred_time, epsilon)
self.accumulate_err = Metric.accumulate_err(all_tt, all_pred_time,
epsilon)
self.weighted_mae = total_mean_mae / data_size
if epoch % 50 == 0:
print("test batch Pred Err: {}, R(q): {}, Accumulated Error: "\
"{}, Weighted MAE: {}".format(self.pred_err,
self.rq,
self.accumulate_err,
self.weighted_mae))
else:
self.curr_losses = {operator: torch.mean(torch.cat(total_losses[operator])).item() for operator in self.dim_dict}
self.total_loss = torch.mean(total_loss / self.batch_size)
#print("self.total_loss.shape", self.total_loss.shape)
def backward(self):
self.last_total_loss = self.total_loss.item()
if self.best > self.total_loss.item():
self.best = self.total_loss.item()
self.save_units('best')
self.total_loss.backward()
self.total_loss = None
def optimize_parameters(self, epoch):
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
self.test = False
self._forward(epoch)
# clear prev grad first
for operator in self.optimizers:
self.optimizers[operator].zero_grad()
self.backward()
for operator in self.optimizers:
self.optimizers[operator].step()
if len(self.schedulers) > 0:
self.schedulers[operator].step()
self.input = self.test_dataset
self.test = True
self._forward(epoch)
self.last_test_loss = self.test_loss.item()
self.last_pred_err = self.pred_err.item()
self.last_rq = self.rq
self.test_loss, self.pred_err = None, None
self.rq = 0
def evaluate(self, eval_dataset):
self.test = True
self.set_input(eval_dataset)
self._forward(0)
self.last_test_loss = self.test_loss.item()
self.last_pred_err = self.pred_err.item()
self.last_rq = self.rq
self.test_loss, self.pred_err = None, None
self.rq = 0
def get_current_losses(self):
return self.curr_losses
def save_units(self, epoch):
for name, unit in self.units.items():
save_filename = '%s_net_%s.pth' % (epoch, name)
save_path = os.path.join(self.save_dir, save_filename)
if torch.cuda.is_available():
torch.save(unit.module.cpu().state_dict(), save_path)
unit.to(self.device)
else:
torch.save(unit.cpu().state_dict(), save_path)
def load(self, epoch):
for name in self.units:
save_filename = '%s_net_%s.pth' % (epoch, name)
save_path = os.path.join(self.save_dir, save_filename)
if not os.path.exists(save_path):
raise ValueError("model {} doesn't exist".format(save_path))
self.units[name].load_state_dict(torch.load(save_path))