-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
877 lines (800 loc) · 41.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
import datetime
import json
import os
import pickle
import shutil
import socket
import sys
import time
import click
import numpy as np
import PIL.Image as Image
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import src.utils.utils_dataset as utils_dataset
import src.utils.utils_functions as utils_functions
import src.utils.utils_metrics as utils_metrics
import src.utils.utils_tensorboard as tb_utils
from src.lmdb_ds import LMDBDataset
from src.net_DM_MM_TCM_CM import Pipeline as model_DM_MM_TCM_CM
from src.net_DM_TCM_MM_CM import Pipeline as model_DM_TCM_MM_CM
from src.utils.VDAO_folds.Resnet50_reduced import Resnet50_Reduced
def print_info(text, log_path):
utils_functions.log(log_path, text, option='a', print_out=True, new_line=True)
def print_validation_info(metrics_val, log_path):
print_info(f'validation loss: {metrics_val["summary_validation"]["loss_validation"]}', log_path)
print_info(f'validation accuracy: {(100*metrics_val["summary_validation"]["accuracy"]):.2f}%',
log_path)
print_info(f'validation DIS: {metrics_val["summary_validation"]["DIS_validation"]}', log_path)
def print_net_params(model, log_path):
print_info('\nMain parameters of the network:', log_path)
print_info(f'* opening radius: {model.opening.se_sigmoid.radius.item()}', log_path)
print_info(f'* closing radius: {model.closing.se_sigmoid.radius.item()}', log_path)
print_info(f'* temporal consistency neighbors: {model.temporal_consistency.voting_window}',
log_path)
print_info(f'* threshold classification: {model.classification_function.threshold.item()}\n',
log_path)
def print_training_info(cycle_name, loss_epoch_train, start_time, log_path):
print_info(
f'training cycle {cycle_name}\tLoss: {loss_epoch_train}\tRunning time: {time.time() - start_time} s',
log_path)
def unnormalize_add_bb(frame_norm, std_val, mean_val, bb=None):
f = utils_functions.unnormalize(frame_norm.squeeze(), std_val, mean_val,
one_channel=False).permute(1, 2, 0)
f = (255 * f.numpy()).astype(np.uint8)
if bb is not None:
f = utils_functions.add_bb_into_image(f.copy(),
bb.squeeze().numpy(),
color=(0, 0, 255),
thickness=2,
label=None)
return f
def show_frame(frame_norm, std_val, mean_val, bb):
f = unnormalize_add_bb(frame_norm, std_val, mean_val, bb)
Image.fromarray(f).show()
@click.command()
@click.option('--fold', default=-1, help='Fold number.', type=click.IntRange(1, 9, clamp=False))
@click.option('--batch_size', default=14, help='Batch size.', type=click.INT)
@click.option('--epochs', default=100, help='Number of epochs to train.', type=click.INT)
@click.option('--device', default=0, help='GPU device.', type=click.INT)
@click.option('--perform_validation/--no-perform_validation',
default=True,
help='If present, performs validation after every epoch.')
@click.option(
'--run_once_without_training/--no-run_once_without_training',
default=True,
help=
'If present, before training, performs validation on the first epoch, so the first assessment metrics and network parameters are stored.'
)
@click.option('--net',
default='DM_MM_TCM_CM',
help='Network structure.',
type=click.Choice(['DM_MM_TCM_CM', 'DM_TCM_MM_CM'], case_sensitive=False))
@click.option('--name_experiment', default=None, help='name of the experiment.', required=False)
@click.option('--seed',
default=123,
help='random seed to achieve achieve reproducible results.',
type=click.INT)
@click.option("--init_params_file",
type=click.Path(exists=True),
default='src/init_params_train.json',
required=False)
@click.option("--continue_from", type=click.Path(exists=True), required=False)
@click.option("--tb_params_file",
type=click.Path(exists=True),
default='src/tb_params.json',
required=False)
@click.option('--alignment',
default='temporal',
help='Type of alignment alignment.',
type=click.Choice(['temporal', 'geometric'], case_sensitive=False))
def main(fold, epochs, batch_size, net, name_experiment, seed, init_params_file, tb_params_file,
device, perform_validation, run_once_without_training, continue_from, alignment):
# Read init params file
init_params = json.load(open(init_params_file, 'r'))
# Read tb params file
tensorboard_params = json.load(open(tb_params_file, 'r'))
if continue_from is not None:
run_once_without_training = False
else:
if name_experiment is None:
name_experiment = f'training_fold_{fold}'
log_dir = os.path.join('training_logs', name_experiment)
log_path = os.path.join(log_dir, 'logging.txt')
# Check if there is already a folder with the name of the experiment
create_folder = True
dir_exists = os.path.isdir(log_dir)
# If it shouldnt continue from an existing experiment, check if the experiment ex
if continue_from is None and dir_exists:
create_folder = input(
f'A directory with the name of the experiment ({log_dir}) already exist.\nDo you want to overwrite it? (y: yes /n: no) '
) == 'y'
if create_folder:
create_folder = input(
'REALLY? ARE YOU SURE? ALL CONTENT WILL BE ERASED! (y: yes /n: no) ') == 'y'
if create_folder:
shutil.rmtree(log_dir)
if continue_from is None and create_folder is False:
print('Exiting...')
sys.exit()
# create tensorboard
if log_dir:
writer = SummaryWriter(log_dir=log_dir)
# log parameters
print_info(f'Folder {log_dir} created to save tensorboard logs.\n', log_path)
print_info(f'Started at: {datetime.datetime.now()}', log_path)
print_info(f'Hostname: {socket.gethostname()}', log_path)
print_info(f'Experiment name: {name_experiment}\n', log_path)
print_info(f'Fold: {fold}', log_path)
print_info(f'Parameters:', log_path)
print_info(f'--fold {fold}', log_path)
print_info(f'--batch_size {batch_size}', log_path)
print_info(f'--epochs {epochs}', log_path)
print_info(f'--net {net}', log_path)
print_info(f'--name_experiment {name_experiment}', log_path)
print_info(f'--seed {seed}', log_path)
print_info(f'--init_params_file {init_params_file}', log_path)
print_info(f'--device {device}', log_path)
print_info(f'--tb_params_file {tb_params_file}', log_path)
print_info(f'--perform_validation {perform_validation}', log_path)
print_info(f'--run_once_without_training {run_once_without_training}', log_path)
print_info(f'--continue_from {continue_from}', log_path)
print_info(f'--alignment {alignment}', log_path)
print_info(f'\n', log_path)
# Define cycles and batch sizes
if net == 'DM_MM_TCM_CM':
train_cycles = [
{
'cycle_name': 'training DM',
'loss_func': nn.MSELoss(),
'batch_size': batch_size,
'load_mode': 'keyframe',
'count_trained_batches': 0
},
{
'cycle_name': 'training MM',
'loss_func': nn.MSELoss(),
'batch_size': batch_size,
'load_mode': 'keyframe',
'count_trained_batches': 0
},
{
'cycle_name': 'training TCM',
'loss_func': nn.MSELoss(),
'batch_size': 1, # 1 block
'load_mode': 'block',
'count_trained_batches': 0
},
{
'cycle_name': 'training CM',
'loss_func': nn.MSELoss(),
'batch_size': 1, # 1 block
'load_mode': 'block',
'count_trained_batches': 0
}
]
else: # net == 'DM_TCM_MM_CM'
train_cycles = [
{
'cycle_name': 'training DM',
'loss_func': nn.MSELoss(),
'batch_size': batch_size,
'load_mode': 'keyframe',
'count_trained_batches': 0
},
{
'cycle_name': 'training TCM',
'loss_func': nn.MSELoss(),
'batch_size': 1, # 1 block
'load_mode': 'block',
'count_trained_batches': 0
},
{
'cycle_name': 'training MM',
'loss_func': nn.MSELoss(),
'batch_size': 1,
'load_mode': 'block',
'count_trained_batches': 0
},
{
'cycle_name': 'training CM',
'loss_func': nn.MSELoss(),
'batch_size': 1,
'load_mode': 'block',
'count_trained_batches': 0
},
]
# Cycle for validation or testing
inference_cycle = {
'cycle_name': 'inference',
'load_mode': 'keyframe',
'loss_func': nn.MSELoss(),
}
# Define device
torch.cuda.set_device(device)
device = torch.device(f'cuda:{device}') if torch.cuda.is_available() else torch.device('cpu')
# Create CNN for feature extraction
resnet = Resnet50_Reduced(device)
resnet.freeze()
init_params['scale_module'] = init_params['scale_module'][alignment]
# Create network
if net == 'DM_MM_TCM_CM':
model = model_DM_MM_TCM_CM(init_params, device).to(device)
else: # DM_TCM_MM_CM
model = model_DM_TCM_MM_CM(init_params, device).to(device)
hooks_dict = utils_functions.register_hooks(model)
# Continue from previous training
if continue_from:
model = torch.load(continue_from, map_location=device)
model.device = device
print_info(f'Continuing training from {continue_from}\n', log_path)
###################################################
# Training parameters
###################################################
train_params = {'num_epochs': epochs, 'lr': 1e-8}
optimizer = optim.Adam([
{
'params': model.dissimilarity_module.branches[0].weights_ref,
'lr': 1e-2
},
{
'params': model.dissimilarity_module.branches[0].weights_tar,
'lr': 1e-2
},
{
'params': model.dissimilarity_module.branches[0].bias_diff,
'lr': 2e-4
},
{
'params': model.dissimilarity_module.branches[0].weights_channels,
'lr': 2e-2
},
{
'params': model.dissimilarity_module.combination_bias,
'lr': 2e-3
},
{
'params': model.opening.parameters(),
'lr': 1e-4
},
{
'params': model.closing.parameters(),
'lr': 13e-3
},
{
'params': model.classification_function.parameters(),
'lr': 1e-4
},
],
lr=train_params['lr'])
# As frames in the LMDB are normalized, lets define the denormalizations
normalize_transform = transforms.Normalize(mean=resnet.MEAN_IMAGENET, std=resnet.STD_IMAGENET)
to_tensor_transform = transforms.ToTensor()
transformations = transforms.Compose([to_tensor_transform, normalize_transform])
###################################################
# Datasets and dataloaders
###################################################
# Training dataset
print_info(f'Datasets info:', log_path)
loader_params_train = {'shuffle': True, 'num_workers': 0, 'worker_init_fn': seed}
dataset_train = LMDBDataset(fold_number=fold,
type_dataset='train',
transformations=transformations,
balance=True,
load_mode='block',
alignment=alignment)
total_pos = len([b for b in dataset_train.keys_ds if b['class_keyframe'] is True])
total_neg = len([b for b in dataset_train.keys_ds if b['class_keyframe'] is False])
print_info(f'Training dataset (fold {fold}) loaded with {len(dataset_train)} samples:',
log_path)
print_info(f'Positive samples: {total_pos}', log_path)
print_info(f'Negative samples: {total_neg}', log_path)
print_info(str(dataset_train.get_objects()) + '\n', log_path)
# Validation dataset
loader_params_val = {'shuffle': False, 'num_workers': 0, 'worker_init_fn': seed}
dataset_validation = LMDBDataset(fold_number=fold,
type_dataset='validation',
transformations=transformations,
balance=False,
load_mode='keyframe',
max_samples=None,
alignment=alignment)
datasets_validation = utils_dataset.split_data_set_into_videos_lmdb(dataset_validation)
total_pos = len([b for b in dataset_validation.keys_ds if b['class_keyframe'] is True])
total_neg = len([b for b in dataset_validation.keys_ds if b['class_keyframe'] is False])
print_info(f'Validation dataset (fold {fold}) loaded with {len(dataset_validation)} samples:',
log_path)
print_info(f'Positive samples: {total_pos}', log_path)
print_info(f'Negative samples: {total_neg}', log_path)
print_info(str(dataset_validation.get_objects()) + '\n', log_path)
def prepare_model(cycle, len_data_loader_train):
'''freeze/unfreeze modules'''
# Pass to TCM the amount of samples and the batch size. This is needed to accumulate the samples
model.temporal_consistency.set_batch_info(total_samples=len_data_loader_train,
samples_to_accumulate=batch_size)
# Freeze all modules
model.dissimilarity_module.freeze()
model.opening.freeze()
model.closing.freeze()
model.classification_function.freeze()
# Unfreeze the needed modules, depending on the training cycle
if cycle['cycle_name'] == 'training DM':
model.dissimilarity_module.unfreeze()
elif cycle['cycle_name'] == 'training TCM':
pass
elif cycle['cycle_name'] == 'training MM':
model.opening.unfreeze()
model.closing.unfreeze()
elif cycle['cycle_name'] == 'training CM':
model.classification_function.unfreeze()
elif cycle['cycle_name'] == 'inference':
# Do nothing, once all modules are frozen
pass
def prepare_samples(cycle, ref_frames, tar_frames, labels_classes, bbs):
''' samples arrive in the format (batch, samples, channel, h, w). Depending on the cycle, arrange the samples and dimensions'''
if cycle['cycle_name'] == 'training DM':
# if 'training DM' -> load_mode is 'keyframe' -> samples=1 :. (batch, 1, c, h, w)
optimizer.zero_grad()
elif cycle['cycle_name'] == 'training TCM':
# if 'training TCM' -> load_mode is 'block' -> samples=15 -> batch=1 :. (1, 15, c, h, w)
# Thus, if 'training TCM', it is needed to switch samples <-> batch, so it becomes (15, 1, c, h, w)
# A squeeze(1) is needed so it becomes (15, c, h, w)
ref_frames = ref_frames.permute(1, 0, 2, 3, 4).squeeze(1)
tar_frames = tar_frames.permute(1, 0, 2, 3, 4).squeeze(1)
bbs = bbs.permute(1, 0, 2).squeeze(1)
# labels_classes = # Do nothing, because it is a list
model.temporal_consistency.start_new_train_batch()
elif cycle['cycle_name'] == 'training MM':
optimizer.zero_grad()
if net == 'DM_TCM_MM_CM':
# squeeze(1) so it becomes 15, c, h, w
ref_frames = ref_frames.permute(1, 0, 2, 3, 4).squeeze(1)
tar_frames = tar_frames.permute(1, 0, 2, 3, 4).squeeze(1)
# get central id of the block
middle_id = model.temporal_consistency.max_frames // 2
bbs = bbs.permute(1, 0, 2)[middle_id]
labels_classes = labels_classes[middle_id]
elif cycle['cycle_name'] == 'training CM':
optimizer.zero_grad()
# squeeze(1) so it becomes (15, c, h, w)
ref_frames = ref_frames.permute(1, 0, 2, 3, 4).squeeze(1)
tar_frames = tar_frames.permute(1, 0, 2, 3, 4).squeeze(1)
# gets the central id of the block
middle_id = model.temporal_consistency.max_frames // 2
bbs = bbs.permute(1, 0, 2)[middle_id]
labels_classes = labels_classes[middle_id]
elif cycle['cycle_name'] == 'inference':
pass
return ref_frames, tar_frames, labels_classes, bbs
def tb_log_image_strips(data_dict, counter):
data_dict['labels_bool'] = [i.item() == 1 for i in data_dict['gt_labels']]
outputs = {
'model_output': [o.item() for o in data_dict['outputs']],
'output_bool': [o.item() > .5 for o in data_dict['outputs']]
}
# log into tensorboard
ref_img = (tb_utils.unnormalize(torch.stack(data_dict['ref_frame']),
resnet.STD_IMAGENET,
resnet.MEAN_IMAGENET,
one_channel=False) * 255).to(torch.uint8)
tar_img = (tb_utils.unnormalize(torch.stack(data_dict['tar_frame']),
resnet.STD_IMAGENET,
resnet.MEAN_IMAGENET,
one_channel=False) * 255).to(torch.uint8)
params_dict = {
'desired_output_shape': ref_img.shape,
'ref_img': ref_img,
'tar_img': tar_img,
'dissimilarity_output': torch.stack(data_dict['dissimilarity_output']),
'temporal_consistency_output': data_dict['temporal_consistency_output'],
'opening_output': data_dict['opening_output'],
'closing_output': data_dict['closing_output'],
'gt_classes': data_dict['labels_bool'],
'preds_classes': outputs['output_bool'],
'rad_open': model.opening.se_sigmoid.radius.item(),
'thresh_open': model.opening.thresh_by_volume_erosion.volume,
'rad_close': model.closing.se_sigmoid.radius.item(),
'thresh_close': model.closing.thresh_by_volume_erosion.volume,
'outputs_model': outputs['model_output']
}
img_results_strap = tb_utils.get_strips_intermediate_images(**params_dict)
if writer is not None:
writer.add_image('final_strip', img_results_strap, global_step=counter)
writer.close()
def train(cycle, not_learning=False):
# Set load_mode ('block' or 'keyframe') and batch size according to the training cycle
dataset_train.load_mode = cycle['load_mode']
data_loader_train = DataLoader(dataset_train,
**loader_params_train,
batch_size=cycle['batch_size'])
# prepare model (freezing modules that are not trained)
prepare_model(cycle, len(data_loader_train))
frames_to_save = {
'ref_frame': [],
'tar_frame': [],
'gt_labels': [],
'dissimilarity_output': [],
'temporal_consistency_output': None,
'opening_output': [],
'closing_output': [],
'outputs': None
}
# dictionary to be updated with the best temporal windows every epoch
dict_temporal_consistency_results = {}
losses = []
for batch, (ref_frames, tar_frames, labels_classes, bbs) in enumerate(data_loader_train):
# prepare samples (permute channels, zero grads, etc)
(ref_frames, tar_frames, labels_classes,
bbs) = prepare_samples(cycle, ref_frames, tar_frames, labels_classes, bbs)
middle_id = model.temporal_consistency.max_frames // 2
# if in the last cycle, check if it is time to save images on the tensorboard
save_images_tb = tensorboard_params['training']['intermediate_images']['enabled'].lower(
) == 'true' and cycle['cycle_name'] == 'training CM' and cycle[
'count_trained_batches'] % tensorboard_params['training']['intermediate_images'][
'period'] == 0
if save_images_tb:
frames_to_save['ref_frame'].append(ref_frames[middle_id].cpu())
frames_to_save['tar_frame'].append(tar_frames[middle_id].cpu())
frames_to_save['gt_labels'].append(labels_classes.cpu())
gts = {
'labels': labels_classes,
'bounding_boxes': bbs,
# 'shape': tar_frames.squeeze().shape
}
# features from the frames
feat_ref = resnet(ref_frames.to(device))
feat_tar = resnet(tar_frames.to(device))
# if there is only 1 sample in the batch len(feat_ref.shape) == 3
if feat_ref.dim() == 3:
feat_ref = feat_ref.unsqueeze(0)
if feat_tar.dim() == 3:
feat_tar = feat_tar.unsqueeze(0)
# pass samples by the network
outputs = model({
'feat_ref': feat_ref,
'feat_tar': feat_tar,
'cycle_name': cycle['cycle_name']
})
# if it is time to save images of this batch on the tensorboard
if save_images_tb:
if net == 'DM_MM_TCM_CM':
frames_to_save['dissimilarity_output'].append(
(hooks_dict['hook_opening'].input[0][middle_id] * 255).to(
torch.uint8).cpu())
frames_to_save['opening_output'].append(
(hooks_dict['hook_opening'].output[middle_id] * 255).to(
torch.uint8).cpu().squeeze())
frames_to_save['closing_output'].append(
(hooks_dict['hook_closing'].output[middle_id] * 255).to(
torch.uint8).cpu().squeeze())
else: # net == 'DM_TCM_MM_CM':
frames_to_save['dissimilarity_output'].append(
(hooks_dict['hook_dissimilarity'].output[middle_id] * 255).to(
torch.uint8).cpu())
# calculates the loss according to the cycle
if cycle['cycle_name'] == 'training DM':
# compute normalized MCC (between 0 and 1)
norm_mcc = utils_functions.calculate_norm_mcc(output=outputs,
gt=gts,
alignment=alignment,
device=device)
# when optimizing normalized mcc, the expected output is 1
labels = torch.ones_like(norm_mcc).to(device)
loss = cycle['loss_func'](norm_mcc, labels)
losses.append(loss.item())
if not not_learning:
loss.backward()
optimizer.step()
elif cycle['cycle_name'] == 'training TCM':
# get the central frame, which is the representative frame of the block
gts['middle_id'] = model.temporal_consistency.max_frames // 2
# compute normalized MCC (between 0 and 1)
# outputs => output of the network training with TCM is a dict containing the amount of pixels "on" in each window size 1,3,5,7,9,11,13,15
norm_mcc_dict = utils_functions.calculate_best_window_temporal_consistency(
outputs, gts, alignment=alignment, device=device)
# when optimizing normalized mcc, the expected output is 1
labels = torch.ones([1]).to(device).unsqueeze(0)
# compute mcc loss for each voting window
loss = {
window: cycle['loss_func'](norm_mcc, labels).item()
for window, norm_mcc in norm_mcc_dict.items()
}
losses.append(loss)
elif cycle['cycle_name'] == 'training MM':
if net == 'DM_TCM_MM_CM':
# in every training loop, a batch with samples enter the net and, while passing by the TCM, they are transformed into 1 sample. This sample is stored in models.temporal_consistency.frames_inference until it reaches 14 samples. Thats why we need to store the gt label in the list model.temporal_consistency.gt_labels_inference
model.temporal_consistency.gather_gt_label_inference(gts['labels'] * 1.)
# We also store each bounding box in the list model.temporal_consistency.gt_bbs_inference
model.temporal_consistency.gather_gt_bb_inference(
gts['bounding_boxes'].squeeze())
if outputs == 'buffer not full yet':
continue
# MM is optimized with MCC of the output image (white blob) and image with bb
# computes normalized MCC, with values between 0 and 1
gts = {
'bounding_boxes': model.temporal_consistency.gt_bbs_inference,
# 'shape': tar_frames.squeeze().shape,
'labels': model.temporal_consistency.gt_labels_inference
}
# compute normalized MCC (between 0 and 1)
norm_mcc = utils_functions.calculate_norm_mcc(output=outputs,
gt=gts,
alignment=alignment,
device=device)
# normalized mcc is expected to be 1
labels = torch.ones_like(norm_mcc).to(device)
loss = cycle['loss_func'](norm_mcc, labels)
losses.append(loss.item())
if not not_learning:
loss.backward()
optimizer.step()
# Clean temporal buffer
if net == 'DM_TCM_MM_CM':
model.temporal_consistency.batch_sizes.pop(0)
model.temporal_consistency.clean_buffer()
elif cycle['cycle_name'] == 'training CM':
# Aggregates in the gts list, the gt label (multiply to 1 to transform the bool into 0 or 1)
model.temporal_consistency.gather_gt_label_inference(gts['labels'] * 1.)
if outputs == 'buffer not full yet':
continue
# compute loss (MSE of the percentage of the image with pixels "on")
if net == 'DM_MM_TCM_CM':
gts_labels = torch.tensor(
model.temporal_consistency.gt_labels_inference).to(device)
else: # net == 'DM_TCM_MM_CM'
gts_labels = torch.tensor(
model.temporal_consistency.gt_labels_inference).unsqueeze(1).to(device)
loss = cycle['loss_func'](outputs, gts_labels)
losses.append(loss.item())
if not not_learning:
loss.backward()
optimizer.step()
# Clear the buffer of the temporal voting
model.temporal_consistency.batch_sizes.pop(0)
model.temporal_consistency.clean_buffer()
if save_images_tb:
if net == 'DM_MM_TCM_CM':
frames_to_save['temporal_consistency_output'] = (
hooks_dict['hook_sum_pixels_on'].input[0].squeeze() * 255).to(
torch.uint8).cpu()
frames_to_save['outputs'] = outputs
# Transform lists into tensors
frames_to_save['closing_output'] = torch.stack(frames_to_save['closing_output'])
frames_to_save['opening_output'] = torch.stack(frames_to_save['opening_output'])
else: # net == 'DM_TCM_MM_CM':
frames_to_save['temporal_consistency_output'] = (
hooks_dict['hook_opening'].input[0] * 255).to(torch.uint8).cpu()
frames_to_save['opening_output'] = (hooks_dict['hook_opening'].output * 255).to(
torch.uint8).cpu()
frames_to_save['closing_output'] = (hooks_dict['hook_closing'].output * 255).to(
torch.uint8).cpu()
frames_to_save['outputs'] = outputs
tb_log_image_strips(frames_to_save, cycle['count_trained_batches'])
frames_to_save = {
'ref_frame': [],
'tar_frame': [],
'gt_labels': [],
'dissimilarity_output': [],
'temporal_consistency_output': None,
'opening_output': [],
'closing_output': [],
'outputs': None
}
cycle['count_trained_batches'] += 1
################################################################################################
# Finished the cycle
################################################################################################
if cycle['cycle_name'] == 'training DM':
mean_loss = np.mean(losses)
elif cycle['cycle_name'] == 'training TCM':
# for each batch, sum all results of the voting window
d = {}
for l in losses:
for k, v in l.items():
d.setdefault(k, []).append(v)
d = {k: sum(v) for k, v in d.items()}
for k in d.keys():
if k not in dict_temporal_consistency_results:
dict_temporal_consistency_results[k] = 0
# Add into dict_temporal_consistency_results the sum of the results obtained in this epoch
for window, soma in d.items():
dict_temporal_consistency_results[window] += soma
# Set into the model, the window with the lowest loss
model.temporal_consistency.voting_window = min(
dict_temporal_consistency_results, key=dict_temporal_consistency_results.get)
# compute the mean loss
mean_loss = d[model.temporal_consistency.voting_window] / \
len(losses)
elif cycle['cycle_name'] == 'training MM':
mean_loss = np.mean(losses)
elif cycle['cycle_name'] == 'training CM':
mean_loss = np.mean(losses)
return mean_loss
def validate(cycle, quiet=True):
metrics_all_videos = {'videos': {}, 'summary_validation': None}
pred_labels, gt_labels = [], []
# In the validation phase, it is needed to load one video at a time
for id_vid_val, dataset_val in enumerate(datasets_validation):
# makes sure that there is only 1 video that is being loaded
assert len(set([k['video_name'] for k in dataset_val.keys_ds])) == 1
vid_basename = dataset_val.keys_ds[0]['video_name']
if not quiet:
print(f'Evaluating video {vid_basename} ({len(dataset_val)} frames)')
data_loader_validate = DataLoader(dataset_val,
**loader_params_val,
batch_size=model.temporal_consistency.voting_window)
# prepare model (freezing modules that are not trained)
prepare_model(cycle, len(data_loader_validate))
metrics_vid = {
'pred_labels': [],
'gt_labels': [],
'DIS': None,
'accuracy': None,
'mean_loss': None
}
losses_vid = []
buffer_frames = {}
count_samples = 0
init_frame, central_frame, end_frame = 0, 0, 0
voting_window = model.temporal_consistency.voting_window
for batch, (ref_frames, tar_frames, labels_classes,
bbs) in enumerate(data_loader_validate):
# prepare samples (permute channels, zero grads, etc)
(ref_frames, tar_frames, labels_classes,
_) = prepare_samples(cycle, ref_frames, tar_frames, labels_classes, bbs)
# features from the frames
feat_ref = resnet(ref_frames.to(device))
feat_tar = resnet(tar_frames.to(device))
# if there is only 1 sample in the batch len(feat_ref.shape) == 3
if len(feat_ref.shape) == 3:
feat_ref = feat_ref.unsqueeze(0)
feat_tar = feat_tar.unsqueeze(0)
labels_classes = labels_classes.unsqueeze(0)
# aaa = (utils_functions.unnormalize(tar_frames, resnet.STD_IMAGENET, resnet.MEAN_IMAGENET).permute(0,2,3,1).numpy().squeeze()*255).astype(np.uint8)
# for i, img in enumerate(aaa):
# Image.fromarray(img).save(f'{i}_tar.png')
samples_batch = len(feat_ref)
for i in range(samples_batch):
buffer_frames[count_samples] = {}
buffer_frames[count_samples]['feat_ref'] = feat_ref[i]
buffer_frames[count_samples]['feat_tar'] = feat_tar[i]
buffer_frames[count_samples]['class'] = labels_classes[i]
count_samples += 1
init_frame = max(central_frame - voting_window // 2, 0)
end_frame = min(central_frame + voting_window // 2, len(dataset_val))
# clean the buffer => remove frames out of the voting window
ids_to_remove = [i for i in buffer_frames if i < init_frame]
for i in ids_to_remove:
del buffer_frames[i]
while init_frame in buffer_frames and end_frame in buffer_frames and central_frame < len(
dataset_val):
# Sets the dictionary with the data to be passed to the network (between init_frame and end_frame)
data = {
'feat_ref': [],
'feat_tar': [],
'class': [],
'bb': [],
'frame_ids': [],
'central_frame': central_frame
}
for i in range(init_frame, end_frame + 1, 1):
{data[k].append(v) for k, v in buffer_frames[i].items()}
data['frame_ids'].append(i)
position_central_frame = data['frame_ids'].index(central_frame)
data['feat_ref'] = torch.stack(data['feat_ref'])
data['feat_tar'] = torch.stack(data['feat_tar'])
# Pass data through the network
outputs = model.inference_validation_test(data)
label_gt = (data['class'][position_central_frame] * 1.).to(device)
loss = cycle['loss_func'](outputs.squeeze(), label_gt)
losses_vid.append(loss.item())
central_frame += 1
init_frame = max(central_frame - voting_window // 2, 0)
end_frame = min(central_frame + voting_window // 2, len(dataset_val))
if end_frame >= len(dataset_val):
end_frame = len(dataset_val) - 1
# compute the metrics
class_out = (outputs > .5).item()
metrics_vid['gt_labels'].append((label_gt.item() == 1) * 1)
metrics_vid['pred_labels'].append(class_out * 1)
# finished to validate one video
# compute the metrics
metrics_vid['mean_loss'] = np.mean(losses_vid)
metrics_vid['DIS'] = utils_metrics.calculate_DIS(metrics_vid['pred_labels'],
metrics_vid['gt_labels'])
metrics_vid['accuracy'] = utils_metrics.calculate_accuracy(
metrics_vid['pred_labels'], metrics_vid['gt_labels'])
# accumulate lists with predictions and groundtruths to be uses d in the final DIS
pred_labels += metrics_vid['pred_labels']
gt_labels += metrics_vid['gt_labels']
# save matrics of the video
metrics_all_videos['videos'][vid_basename] = metrics_vid
# computes general metrics considering all videos
metrics_all_videos['summary_validation'] = {
'loss_validation':
np.mean([met['mean_loss'] for vid, met in metrics_all_videos['videos'].items()]),
'DIS_validation':
utils_metrics.calculate_DIS(pred_labels, gt_labels),
'accuracy':
utils_metrics.calculate_accuracy(pred_labels, gt_labels)
}
return metrics_all_videos
log_data = {'training_loss': {}, 'training_variables': {}, 'validation_metrics': {}}
if continue_from is not None:
init_epoch = int(
os.path.basename(continue_from).replace('model_epoch_', '').replace('.pth', '')) + 1
else:
init_epoch = 0
for epoch in range(init_epoch, epochs):
print_info('*' * 100, log_path)
# If first epoch requires no learning
not_learning = run_once_without_training and epoch == 0
if not_learning:
print_info(f'\nEpoch {epoch+1}:{epochs} \t NOT LEARNING', log_path)
else:
print_info(f'\nEpoch {epoch+1}:{epochs}', log_path)
# initiate the dictionary
log_data['training_loss'][epoch] = {}
# Training
for train_cycle in train_cycles:
start = time.time()
cycle_name = train_cycle['cycle_name'].replace('training ', '')
loss_epoch_train = train(train_cycle, not_learning=not_learning)
print_training_info(cycle_name, loss_epoch_train, start, log_path)
# register into the log (pickle file) the module loss
log_data['training_loss'][epoch][train_cycle["cycle_name"]] = loss_epoch_train
# save training loss into the tensorboard
if writer is not None and epoch % tensorboard_params['training']['loss']['period'] == 0:
writer.add_scalars("loss", {f'train {cycle_name}': loss_epoch_train}, epoch)
writer.close()
# after all cycles, store into log (pickle file) all parameters of the network
log_data['training_variables'][epoch] = model.get_trainable_values()
# after all cycles, save the learned parameters
if writer is not None and epoch % tensorboard_params['training']['parameters_evolution'][
'period'] == 0:
tb_utils.save_trainable_values(writer,
model,
prefix_var='epoch_',
step=epoch,
histogram=True)
# after all cycles, save the model
if epoch % tensorboard_params['training']['save_model']['period'] == 0:
path_save_model = os.path.join(log_dir, f'model_epoch_{epoch}.pth')
torch.save(model, path_save_model)
print_info(f'\nModel saved (model_epoch_{epoch}.pth)', log_path)
# Validation
if perform_validation:
print_info('\nEvaluating validation set', log_path)
metrics_val = validate(inference_cycle)
print_validation_info(metrics_val, log_path)
log_data['validation_metrics'][epoch] = metrics_val
# save valitation into tensorboard
if writer is not None and epoch % tensorboard_params['validation']['loss'][
'period'] == 0:
writer.add_scalars(
"loss", {'validation': metrics_val["summary_validation"]["loss_validation"]},
epoch)
writer.add_scalars("accuracy_val",
{'validation': metrics_val["summary_validation"]["accuracy"]},
epoch)
writer.add_scalars(
"DIS_val", {'validation': metrics_val["summary_validation"]["DIS_validation"]},
epoch)
writer.close()
# Print the parameters
print_net_params(model, log_path)
# Save pickle file
filename = 'results'
if continue_from is not None: # if continued from a previously trained model
files = utils_functions.get_files_recursively(log_dir, 'results*.pickle')
if len(files) != 0:
filename = f'results_continuation_{len(files)}'
pickle_fp_to_save = os.path.join(f'{log_dir}', f'{filename}.pickle')
pickle.dump(log_data, open(pickle_fp_to_save, 'wb'))
print_info(f'\nPickles with results saved successfully ({pickle_fp_to_save})', log_path)
if __name__ == "__main__":
main()