forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfile_utils.py
82 lines (67 loc) · 2.56 KB
/
file_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright 2019 DeepMind Technologies Limited and Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""File utilities."""
import math
import os
import numpy as np
from PIL import Image
class FileExporter(object):
"""File exporter utilities."""
def __init__(self, path, grid_height=None, zoom=1):
"""Constructor.
Arguments:
path: The directory to save data to.
grid_height: How many data elements tall to make the grid, if appropriate.
The width will be chosen based on height. If None, automatically
determined.
zoom: How much to zoom in each data element by, if appropriate.
"""
if not os.path.exists(path):
os.makedirs(path)
self._path = path
self._zoom = zoom
self._grid_height = grid_height
def _reshape(self, data):
"""Reshape given data into image format."""
batch_size, height, width, n_channels = data.shape
if self._grid_height:
grid_height = self._grid_height
else:
grid_height = int(math.floor(math.sqrt(batch_size)))
grid_width = int(math.ceil(batch_size/grid_height))
if n_channels == 1:
data = np.tile(data, (1, 1, 1, 3))
n_channels = 3
if n_channels != 3:
raise ValueError('Image batch must have either 1 or 3 channels, but '
'was {}'.format(n_channels))
shape = (height * grid_height, width * grid_width, n_channels)
buf = np.full(shape, 255, dtype=np.uint8)
multiplier = 1 if data.dtype in (np.int32, np.int64) else 255
for k in range(batch_size):
i = k // grid_width
j = k % grid_width
arr = data[k]
x, y = i * height, j * width
buf[x:x + height, y:y + width, :] = np.clip(
multiplier * arr, 0, 255).astype(np.uint8)
if self._zoom > 1:
buf = buf.repeat(self._zoom, axis=0).repeat(self._zoom, axis=1)
return buf
def save(self, data, name):
data = self._reshape(data)
relative_name = '{}_last.png'.format(name)
target_file = os.path.join(self._path, relative_name)
img = Image.fromarray(data)
img.save(target_file, format='PNG')