-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
59 lines (42 loc) · 1.49 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# sell
<!-- badges: start -->
<!-- badges: end -->
<img src="https://github.com/rainoffallingstar/sell/blob/master/dev/sell.png" height="200" align="right"/>
The goal of sell is to build a R6-based package for singlecell analysis. Now warped with Seurat V4/V5.
## Installation
You can install the development version of sell:
``` r
# FILL THIS IN! HOW CAN PEOPLE INSTALL YOUR DEV PACKAGE?
pak::pak("rainoffallingstar/sell")
```
## Example
This is a basic example which shows you how to solve a common problem:
```{r example,eval=FALSE}
library(sell)
## basic example code
## check seurat api
seurat_api_detect()
## encode your array and pdata into seurat object and take computation
seurat_object <- seurat_encoder(newdata[["arraydata"]],newdata[["pdata"]],min.cells = 0,
min.features = 0,reduction_dims = 1:5)
## extract datas from seurat container
sell_list <- seurat_decoder(seurat_object)
## creat a R6 object for single cell: BagEnd
## In a hole in the ground there lived a lot of cells,lol
sellobject <- BagEndClass$new(arraydata = arraydata,pdata = pdata)
## select interested samples and gene and transform into a long table for further works
sell_melt_df <- intersect_array_pdata(arraydata,pdata) %>%
sell_melt()
```