-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdesity_estimator.py
143 lines (127 loc) · 4.9 KB
/
desity_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Variable
from util import log_normal,sample_gaussian
class encode_structure(nn.Module):
def __init__(self,net_parameters):
super(encode_structure,self).__init__()
self.input_dim = net_parameters['input_dim']
self.output_dim = net_parameters['output_dim']
self.linear_1 = nn.Linear(self.input_dim,24)
self.linear_2 = nn.Linear(24,48)
self.output = nn.Linear(48,self.output_dim)
def forward(self,x):
x_size =x.size()
x = x.reshape(x_size[0],x_size[1],-1)
h = F.relu(self.linear_1(x))
h = F.relu(self.linear_2(h))
x_compressed = F.relu(self.output(h))
return x_compressed
class decode_structure(nn.Module):
def __init__(self,net_parameters):
super(decode_structure,self).__init__()
self.input_dim = net_parameters['hidden_dim']
self.output_dim = net_parameters['input_dim']
self.linear_1 = nn.Linear(self.input_dim,72)
self.linear_2 = nn.Linear(72,24)
self.output = nn.Linear(24,3)
self.sigma = nn.Linear(24,3)
def forward(self,x):
h = F.relu(self.linear_1(x))
h = F.relu(self.linear_2(h))
out = torch.exp(self.output(h))
v = F.softplus(self.sigma(h)) + 1e-8
return out,v
class model_cvd_series(nn.Module):
def __init__(self,encoder,decoder,net_parameters,name='default',loss_type='mse',sigma=0.1,sigma_type='const'):
super(model_cvd_series,self).__init__()
self.input_dim = net_parameters['output_dim']
self.hidden_dim = net_parameters['hidden_dim']
self.batch_size = net_parameters['batch_size']
self.encoder = encoder
self.name = name
self.lstm = nn.LSTM(input_size=self.input_dim,hidden_size = self.hidden_dim,
batch_first=True, bidirectional= False)
self.hidden = self.init_hidden()
self.decoder = decoder
self.loss_type = loss_type
self.sigma = sigma
self.sigma_type = sigma_type
self.nnloss = torch.nn.MSELoss(reduction='none')
def init_hidden(self):
return (torch.zeros(1, self.batch_size, self.hidden_dim),
torch.zeros(1, self.batch_size, self.hidden_dim))
def forward(self,x,c):
x_input = torch.cat((x[:,:-1,:],c[:,:-1,:]),dim=2)
h_x = self.encoder(x_input)
h_xt,_ = self.lstm(h_x,self.hidden)
logits,v = self.decoder(h_xt)
return logits,v
def get_hidden(self,x,c):
x_input = torch.cat((x,c),dim=2)
#print(x.size(),c.size(),x_input.size())
h_x = self.encoder(x_input)
h_xt,_ = self.lstm(h_x,self.hidden)
return h_xt
def cal_loss(self,logit,v,y):
target = y[:,1:,:]
if self.loss_type == 'mse':
loss = self.nnloss(logit,target)
else:
if self.sigma_type == 'const':
vv = self.sigma * torch.ones(logit.size())
else:
vv = v
loss = -1.0*log_normal(target,logit,vv)
loss_tot = loss.sum(-1).sum(-1).mean()
if self.loss_type != 'mse' and self.sigma_type != 'const':
loss_tot = loss_tot + v.sum(-1).sum(-1).mean()
return loss_tot
def sample_structure(self,mu,v):
if self.sigma_type == 'const':
vv = self.sigma * torch.ones(mu.size())
else:
vv = v
sample = sample_gaussian(mu,vv)
return sample
def predict_profile(self,conc,y0,return_hx=False):
Ytemp = torch.zeros((conc.size()[0],conc.size()[1],3))
Ytemp[:,0,:] = y0
if conc.size()[1] == 1:
self.init_hidden()
h_xt = self.get_hidden(Ytemp,conc)
logit,v = self.decoder(h_xt)
else:
for j in range(conc.size()[1]-1):
self.init_hidden()
h_xt = self.get_hidden(Ytemp,conc)
logit,v = self.decoder(h_xt)
Ytemp[:,j+1,:] = logit[:,j,:]
if return_hx == False:
return logit,v
else:
return logit,v,h_xt
def cal_likelihood(self,x,mu,v):
if self.sigma_type == 'const':
vv = self.sigma * torch.ones(mu.size())
else:
vv = v
log_likelihood = log_normal(x,mu,vv)
return log_likelihood
def mse_error(y_predicted,y):
nnloss = torch.nn.MSELoss(reduction='none')
target = y[:,1:,:]
loss = nnloss(y_predicted,target)
return loss
def predict_profile(model,conc,y0,isround=True):
Ytemp = torch.zeros((conc.size()[0],conc.size()[1],3))
Ytemp[:,0,:] = y0
for j in range(conc.size()[1]-1):
model.init_hidden()
logit,v=model(Ytemp,conc)
if isround == True:
Ytemp[:,j+1,:] = torch.round(logit[:,j,:])
else:
Ytemp[:,j+1,:] = logit[:,j,:]
return logit,v