-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
238 lines (206 loc) · 8.75 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import cv2
import argparse
import numpy as np
import tensorflow as tf
import config as cfg
from YOLO_network import YOLONet
from timer import Timer
import sys
class Detector(object):
def __init__(self, net, weight_file):
self.net = net
self.weights_file = weight_file
self.classes = cfg.CLASSES
self.num_class = len(self.classes)
self.image_size = cfg.IMAGE_SIZE
self.cell_num = cfg.CELL_NUM
self.centers_per_cell = cfg.CENTERS_PER_CELL
self.threshold = cfg.THRESHOLD
self.dist_threshold = cfg.DIST_THRESHOLD
self.boundary1 = self.cell_num * self.cell_num * self.num_class
self.boundary2 = self.boundary1 + \
self.cell_num * self.cell_num * self.centers_per_cell
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
print('Restoring weights from: ' + self.weights_file)
self.saver = tf.train.Saver()
self.saver.restore(self.sess, self.weights_file)
def draw_result(self, img, result):
for i in range(len(result)):
'''
x = int(result[i][1])
y = int(result[i][2])
# determine the object type
color_code = (0,0,0)
if (result[i][0] == 0):
# bud -> red
color_code = (0, 0, 255)
elif (result[i][0] == 1):
# flower -> green
color_code = (0, 255, 0)
else:
# fruit -> blue
color_code = (255, 0, 0)
print(x,y)
cv2.circle(img, (x, y), 63, color_code, 3)
'''
# draw the cell with color code for object
h_size = int(np.floor(img.shape[0] / self.cell_num))
w_size = int(np.floor(img.shape[1] / self.cell_num))
x = int(result[i][4]) * w_size
y = int(result[i][5]) * h_size
# determine the object type
color_code = (0,0,0)
if (result[i][0] == 0):
# bud -> red
color_code = (0, 0, 255)
elif (result[i][0] == 1):
# flower -> green
color_code = (0, 255, 0)
else:
# fruit -> blue
color_code = (255, 0, 0)
cv2.rectangle(img,(x,y),(x+w_size,y+h_size),color_code,3)
def detect(self, img):
img_h, img_w, _ = img.shape
inputs = cv2.resize(img, (self.image_size, self.image_size))
inputs = cv2.cvtColor(inputs, cv2.COLOR_BGR2RGB).astype(np.float32)
inputs = (inputs / 255.0) * 2.0 - 1.0
inputs = np.reshape(inputs, (1, self.image_size, self.image_size, 3))
result = self.detect_from_cvmat(inputs)[0]
# scaling back to the the size of input image
for i in range(len(result)):
result[i][1] *= (1.0 * img_w / self.image_size)
result[i][2] *= (1.0 * img_h / self.image_size)
return result
def detect_from_cvmat(self, inputs):
net_output = self.sess.run(self.net.logits,
feed_dict={self.net.images: inputs})
'''
diff = net_output
inputs = np.ones((1,self.image_size,self.image_size,3))
net_output = self.sess.run(self.net.logits,
feed_dict={self.net.images: inputs})
diff = np.sum(np.absolute(diff - net_output))
print(diff)
'''
results = []
for i in range(net_output.shape[0]):
result = self.interpret_output(net_output[i])
results.append(result)
return results
# non maxima suppression
def interpret_output(self, output):
# predicted conditional probabilities
probs = np.zeros((self.cell_num, self.cell_num,
2, self.num_class))
class_probs = np.reshape(
output[0:self.boundary1],
(self.cell_num, self.cell_num, self.num_class))
#print(class_probs)
# predicted object probability
scales = np.reshape(
output[self.boundary1:self.boundary2],
(self.cell_num, self.cell_num, self.centers_per_cell))
#print(scales)
# predicted coordinate
centers = np.reshape(
output[self.boundary2:],
(self.cell_num, self.cell_num, self.centers_per_cell, 4))
#truncate the last width and height dimension
centers = centers[:,:,:,0:2]
offset = np.array(
[np.arange(self.cell_num)] * self.cell_num * 1)
offset = np.transpose(
np.reshape(
offset,
[1, self.cell_num, self.cell_num]),
(1, 2, 0))
# scale the predictions back to the original input image size
centers[:, :, :, 0] += offset
centers[:, :, :, 1] += np.transpose(offset, (1, 0, 2))
centers[:, :, :, :2] = 1.0 * centers[:, :, :, 0:2] / self.cell_num
centers *= self.image_size
for i in range(self.centers_per_cell):
for j in range(self.num_class):
probs[:, :, i, j] = np.multiply(
class_probs[:, :, j], scales[:, :, i])
#compute the unconditional class probability and throw the predictions with low probility.
#print(probs)
filter_mat_probs = np.array(probs >= self.threshold, dtype='bool')
#print(np.sum(filter_mat_probs))
filter_mat_centers = np.nonzero(filter_mat_probs)
centers_filtered = centers[filter_mat_centers[0],
filter_mat_centers[1], filter_mat_centers[2]]
probs_filtered = probs[filter_mat_probs]
classes_num_filtered = np.argmax(
filter_mat_probs, axis=3)[filter_mat_centers[0], filter_mat_centers[1], filter_mat_centers[2]]
#print(classes_num_filtered)
# sort the probability from high to low
'''
argsort = np.array(np.argsort(probs_filtered))[::-1]
centers_filtered = centers_filtered[argsort]
probs_filtered = probs_filtered[argsort]
classes_num_filtered = classes_num_filtered[argsort]
for i in range(len(centers_filtered)):
if probs_filtered[i] == 0:
continue
for j in range(i + 1, len(centers_filtered)):
# zero-out the centers that are too close
if self.calc_dist(centers_filtered[i], centers_filtered[j]) < self.dist_threshold:
probs_filtered[j] = 0.0
# create the filtering mask
filter_dist = np.array(probs_filtered > self.dist_threshold, dtype='bool')
centers_filtered = centers_filtered[filter_dist]
probs_filtered = probs_filtered[filter_dist]
classes_num_filtered = classes_num_filtered[filter_dist]
'''
result = []
# format the output
for i in range(len(centers_filtered)):
result.append(
[classes_num_filtered[i], # integer class type
centers_filtered[i][0],
centers_filtered[i][1],
probs_filtered[i],
filter_mat_centers[0][i],
filter_mat_centers[1][i]])
return result
def calc_dist(self, center1, center2):
distance = np.sqrt((center1[0] - center2[0]) ** 2 + (center1[1] - center2[1]) ** 2)
cell_length = self.image_size/self.cell_num
distance = distance / (cell_length)
distance = np.clip(distance, 0.0, 1.0)
# clip the value
return distance
def image_detector(self, imname, wait=0):
image = cv2.imread(imname)
result = self.detect(image)
self.draw_result(image, result)
#save the output image
cv2.imwrite("output.jpg", image)
def main(argv):
weights = 'yolo.ckpt-30000'
gpu = '0'
categories = ['Anemone_canadensis','Anemone_hepatica','Aquilegia_canadensis','Bidens_vulgata','Celastrus_orbiculatus',
'Centaurea_stoebe','Cirsium_arvense','Cirsium_discolor','Geranium_maculatum','Geranium_robertianum',
'Hemerocallis_fulva','Hibiscus_moscheutos','Impatiens_capensis','Iris_pseudacorus']
imname = argv[0]
specie_name = argv[1]
if specie_name in categories:
if os.path.isfile(imname):
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
# construct the network and load trained weights
yolo = YOLONet(False)
weight_file = os.path.join('model',specie_name ,weights)
detector = Detector(yolo, weight_file)
#detect and save
detector.image_detector(imname)
print("...Done.")
else:
print(imname + " does not exist.")
else:
print("Model doesn't exist for: " + specie_name)
if __name__ == '__main__':
main(sys.argv[1:])