-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy path_functions.R
258 lines (233 loc) · 9.67 KB
/
_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
###NBA_SportVU FUNCTIONS
library(RCurl)
library(jsonlite)
library(dplyr)
library(sp)
factorconvert <- function(f){as.numeric(levels(f))[f]}
sportvu_convert_json <- function (file.name)
{
# Much of the process is from http://tcbanalytics.com/blog/nba-movement-data-R.html#.VnX8d4RiOCQ
# Takes a json and converts it into a dataframe
the.data.file<-fromJSON(file.name)
##Get the sports vu data
moments <- the.data.file$events$moments
##Function for extracting infomration from JSON
extractbb <- function (listbb)
{#df <- unlist(listbb,recursive = FALSE)
df <- listbb
# str(df)
quarters <- unlist(lapply(df, function(x) x[[1]]))
game.clock <- unlist(lapply(df, function(x) x[[3]]))
shot.clock <- unlist(lapply(df, function(x) ifelse(is.null(x[[4]]), 'NA', x[[4]])))
moment.details <- (lapply(df, function(x) x[[6]]))
x3 <- mapply(cbind, moment.details, game.clock, shot.clock,quarters, SIMPLIFY=F)
x4 <- do.call('rbind', x3)
return (x4)
}
test2 <- lapply(moments, function (x) {extractbb(x)})
lengthmm <- the.data.file$events$eventId
test2 <- mapply(cbind, test2, "event.id"=lengthmm, SIMPLIFY=F)
#Remove events that are NAs
final <- (lapply(test2, function(x) {
if ((length(unlist(x)))<=1) {x <- NA}
return(x)
}))
###Merge the file
test2 <- do.call('rbind', final)
test2 <- as.data.frame(test2)
test2[test2 == "NA" ] = NA
all.movement <- test2
#all.movement<-test2[order(test2$game.clock),]
##Lets join the movement to player id
headers = c("team_id", "player_id", "x_loc", "y_loc", "radius", "game_clock", "shot_clock", "quarter","event.id")
colnames(all.movement) <- headers
all.movement<-data.frame(all.movement)
all.movement<-all.movement[order(all.movement$game_clock),]
home.players <- the.data.file$events$home$players[[1]]
away.players <- the.data.file$events$visitor$players[[1]]
colnames(home.players)[3] <- "player_id"
colnames(away.players)[3] <- "player_id"
## Add the player name information to each movement moment
home.movements<-merge(home.players, all.movement, by="player_id")
away.movements<-merge(away.players, all.movement, by="player_id")
ball.movement<-all.movement %>% filter(player_id == -1)
ball.movement$jersey <- NA
ball.movement$position <- NA
ball.movement$team_id <- NA
ball.movement$lastname <- "ball"
ball.movement$firstname <- NA
all.movements <- rbind(home.movements, away.movements,ball.movement)
all.movements[, 6:13] <- lapply(all.movements[, 6:13], factorconvert)
all.movements <- as.data.frame(all.movements) %>% dplyr::arrange(quarter,desc(game_clock),x_loc,y_loc)
return(all.movements)
}
## Function to calculate player distance traveled
travelDist <- function(xloc, yloc){
diffx <- diff(xloc)
diffy <- diff(yloc)
##Removes big jumps - Limiting to changes of less than 1 foot per .04 seconds means
# anything over 17 mph will be excluded, this seems reasonable
diff <- as.data.frame(cbind(diffx,diffy))
diff <- subset(diff, abs(diffx) < 1 & abs(diffy) < 1)
##Back to code
diffx <- as.vector(diff$diffx)
diffy <- as.vector(diff$diffy)
diffx2 <- diffx ^ 2
diffy2 <- diffy ^ 2
a<- diffx2 + diffy2
b<-sqrt(a)
(sum(b))
}
player_dist <- function(lastnameA,lastnameB, eventID) {
#Functions finds the distance of the player, assumes you have a dataframe all.movements with player info
df <- all.movements[which((all.movements$lastname == lastnameA | all.movements$lastname == lastnameB) & all.movements$event.id == eventID),]
dfA <- df %>% filter (lastname==lastnameA) %>% select (x_loc,y_loc)
dfB <- df %>% filter (lastname==lastnameB) %>% select (x_loc,y_loc)
df.l <- 1:nrow(dfA)
distsdf <- unlist(lapply(df.l,function(x) {dist(rbind(dfA[x,], dfB[x,]))}))
return(distsdf)
}
get_game_clock <- function(lastnameA,eventID){
#Function gets the glame clock, assumes there is a dataframe all.movements with player info
alldf <- all.movements[which((all.movements$lastname == lastnameA) & all.movements$event.id == eventID),]
game_clock <- alldf$game_clock
return(as.data.frame(game_clock))
}
player_dist_matrix <- function(eventID) {
#Function creates a matrix of all player/ball distances with each other
#assumes there a dataframe all.movements with player info
players <- all.movements %>% filter(event.id==pickeventID) %>% select(lastname) %>% distinct(lastname)
players2 <- players
bigdistance <-unlist(lapply(list(players$lastname)[[1]], function(X) {
lapply(list(players2$lastname)[[1]], function(Y) {test=
player_dist(X, Y,pickeventID)
})
}), recursive=FALSE)
bigdistance_names <-unlist(lapply(list(players$lastname)[[1]], function(X) {
lapply(list(players2$lastname)[[1]], function(Y) {
paste(X, Y,sep = "_")
})
}), recursive=FALSE)
bigdistancedf <- as.matrix(do.call('cbind',bigdistance))
colnames(bigdistancedf) <- bigdistance_names
bigdistancedf <- bigdistancedf[,colSums(bigdistancedf^2) !=0]
bigdistancedf <- as.data.frame(bigdistancedf)
clockinfo <- get_game_clock("ball",eventID)
bigdistancedf$game_clock <- clockinfo$game_clock
return (bigdistancedf)
}
get_pbp <- function(gameid){
#Grabs the play by play data from the NBA site
URL1 <- paste("http://stats.nba.com/stats/playbyplayv2?EndPeriod=10&EndRange=55800&GameID=",gameid,"&RangeType=2&StartPeriod=1&StartRange=0",sep = "")
the.data.file<-fromJSON(URL1)
test <-the.data.file$resultSets$rowSet
test2 <- test[[1]]
test3 <- data.frame(test2)
coltest <- the.data.file$resultSets$headers
colnames(test3) <- coltest[[1]]
return (test3)}
chull_area <- function(X,Y){
#Calculates the convex hull area
df_hull <- data.frame(X = X, Y = Y)
c.hull <- chull(df_hull)
#You need five points to draw four line segments, so we add the first set of points at the end
c.hull <- c(c.hull, c.hull[1])
chull.coords <- df_hull[c.hull ,]
chull.poly <- Polygon(chull.coords, hole=F)
chull.area <- chull.poly@area
return (chull.area)}
chull_areabyteam <- function (total,balltime) {
#Function returns a dataframe with event id and convex hull area for each team
#Function requires an input of a dataframe with the rotated plays and a dataframe indicating event/time
#for calculating convex hull area
allsum <- NULL
teams <- as.list((unique(total$team_id)))
teams <- teams[!is.na(teams)]
for(i in 1:(nrow(balltime)))
{temp <- total %>% filter(event.id == balltime$event.id[i] & game_clock == balltime$clock28[i]) %>% filter(lastname!="ball")
if (nrow(temp) == 10) {
dfall <- lapply(teams,function (x) { df <- temp %>% filter(team_id == x)
if (nrow(df) == 5) {area <- (chull_area(df$x_loc_r,df$y_loc_r))
area}
})
df <- cbind(balltime$event.id[i],teams[[1]],dfall[[1]],teams[[2]],dfall[[2]])
allsum <- rbind(df,allsum)
}
}
allsum <- as.data.frame(allsum)
colnames(allsum)<-c("event.id","team1","team1_area","team2","team2_area")
return(allsum)
}
player_position <- function(eventid,gameclock){
##Returns positions of all players at a time
##Requires data in total and balltime
dfall <- total %>% filter(game_clock == gameclock,event.id=eventid) %>%
filter(lastname!="ball") %>% select (team_id,x_loc_r,y_loc_r)
colnames(dfall) <- c('ID','X','Y')
return(dfall)
}
chull_plot <- function(event.id,game_clock) {
##Returns a data frame with the coordinates of a convex hull
##Requires player_position for info
df2 <- player_position(event.id,game_clock)
df_hull2 <- df2 %>% filter(ID == min(ID)) %>% select(X,Y)
df_hull3 <- df2 %>% filter(ID == max(ID)) %>% select(X,Y)
c.hull2 <- chull(df_hull2)
c.hull3 <- chull(df_hull3)
#You need five points to draw four line segments, so we add the fist set of points at the end
c.hull2 <- c(c.hull2, c.hull2[1])
c.hull3 <- c(c.hull3, c.hull3[1])
df2 <- as.data.frame(cbind(1,df_hull2[c.hull2 ,]$X,df_hull2[c.hull2 ,]$Y))
df3 <- as.data.frame(cbind(2,df_hull3[c.hull3 ,]$X,df_hull3[c.hull3 ,]$Y))
dfall <- rbind(df2,df3)
colnames(dfall) <- c('ID','X','Y')
return(dfall)
}
chull_plot_centroid <- function(event.id,game_clock) {
##Returns a data frame with the centroid of a convex hull
##Requires player_position for info
df2 <- player_position(event.id,game_clock)
df_hull2 <- df2 %>% filter(ID==min(ID)) %>% select(X,Y)
df_hull3 <- df2 %>% filter(ID==max(ID)) %>% select(X,Y)
c.hull2 <- chull(df_hull2)
c.hull3 <- chull(df_hull3)
df2centroid <- c(1,mean(df_hull2[c.hull2 ,]$X),mean(df_hull2[c.hull2 ,]$Y))
df3centroid <- c(2,mean(df_hull3[c.hull3 ,]$X),mean(df_hull3[c.hull3 ,]$Y))
dfall <- as.data.frame(rbind(df2centroid,df3centroid))
colnames(dfall) <- c('ID','X','Y')
return(dfall)
}
chull_plot_area <- function(event.id,game_clock) {
##Returns a data frame with the area of each convex hull by team ID
##Requires player_position for info
df2 <- player_position(event.id,game_clock)
df2area <- df2 %>% group_by(ID) %>% summarise (area = chull_area(X,Y)) %>% select (ID,area)
return (df2area)
}
velocity <- function(xloc, yloc){
diffx <- as.vector((diff(xloc)))
diffy <- as.vector((diff(yloc)))
diffx2 <- diffx ^ 2
diffy2 <- diffy ^ 2
a<- diffx2 + diffy2
b<-sqrt(a)*25 #(distance in feet per second)
b
}
acceleration <- function(xloc, yloc){
diffx <- as.vector((diff(xloc,differences = 2)))
diffy <- as.vector((diff(yloc,differences = 2)))
diffx2 <- diffx ^ 2
diffy2 <- diffy ^ 2
a<- diffx2 + diffy2
b<-sqrt(a)*25*25 #(distance in feet per second)
b
}
jerk <- function(xloc, yloc){
diffx <- as.vector((diff(xloc,differences = 3)))
diffy <- as.vector((diff(yloc,differences = 3)))
diffx2 <- diffx ^ 2
diffy2 <- diffy ^ 2
a<- diffx2 + diffy2
b<-sqrt(a)*25/32.173*25*25 #(distance in feet per second)
b
}