-
Notifications
You must be signed in to change notification settings - Fork 117
/
merge-weights.py
168 lines (149 loc) · 6.05 KB
/
merge-weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Original copyright by Jason Phang
# https://github.com/zphang
# Taken here
# https://github.com/huggingface/transformers/pull/21955/commits/8978f28e6c44b083c0b190d3931902c2904c940a#diff-110a445233a8b15a0875998eeaf75cb8607b38a5daa736291dd058766879bbdd
import argparse
import json
import os
import shutil
import torch
"""
Sample usage:
```
python merge_weights.py --input_dir D:\Downloads\LLaMA --model_size 13B
```
"""
INTERMEDIATE_SIZE_MAP = {
"7B": 11008,
"13B": 13824,
"30B": 17920,
"65B": 22016,
}
NUM_SHARDS = {
"7B": 1,
"13B": 2,
"30B": 4,
"65B": 8,
}
def read_json(path):
with open(path, "r") as f:
return json.loads(f.read())
def write_model(input_base_path, model_size):
assert model_size in INTERMEDIATE_SIZE_MAP
params = read_json(os.path.join(input_base_path, "params.json"))
num_shards = NUM_SHARDS[model_size]
n_layers = params["n_layers"]
n_heads = params["n_heads"]
n_heads_per_shard = n_heads // num_shards
dim = params["dim"]
dims_per_head = dim // n_heads
# Load weights
if model_size == "7B":
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
else:
loaded = [
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
for i in range(num_shards)
]
state_dict = {}
for layer_i in range(n_layers):
if model_size == "7B":
state_dict |= {
f"layers.{layer_i}.attention.wq.weight": loaded[
f"layers.{layer_i}.attention.wq.weight"
],
f"layers.{layer_i}.attention.wk.weight": loaded[
f"layers.{layer_i}.attention.wk.weight"
],
f"layers.{layer_i}.attention.wv.weight": loaded[
f"layers.{layer_i}.attention.wv.weight"
],
f"layers.{layer_i}.attention.wo.weight": loaded[
f"layers.{layer_i}.attention.wo.weight"
],
f"layers.{layer_i}.feed_forward.w1.weight": loaded[
f"layers.{layer_i}.feed_forward.w1.weight"
],
f"layers.{layer_i}.feed_forward.w2.weight": loaded[
f"layers.{layer_i}.feed_forward.w2.weight"
],
f"layers.{layer_i}.feed_forward.w3.weight": loaded[
f"layers.{layer_i}.feed_forward.w3.weight"
],
f"layers.{layer_i}.attention_norm.weight": loaded[
f"layers.{layer_i}.attention_norm.weight"
],
f"layers.{layer_i}.ffn_norm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
}
else:
state_dict |= {
f"layers.{layer_i}.attention_norm.weight": loaded[0][
f"layers.{layer_i}.attention_norm.weight"
],
f"layers.{layer_i}.ffn_norm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"],
}
state_dict[f"layers.{layer_i}.attention.wq.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
state_dict[f"layers.{layer_i}.attention.wk.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
state_dict[f"layers.{layer_i}.attention.wv.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
state_dict[f"layers.{layer_i}.attention.wo.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
)
state_dict[f"layers.{layer_i}.feed_forward.w1.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
)
state_dict[f"layers.{layer_i}.feed_forward.w2.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
)
state_dict[f"layers.{layer_i}.feed_forward.w3.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
)
if model_size == "7B":
state_dict |= {
"tok_embeddings.weight": loaded["tok_embeddings.weight"],
"norm.weight": loaded["norm.weight"],
"output.weight": loaded["output.weight"],
}
else:
state_dict |= {
"norm.weight": loaded[0]["norm.weight"],
"tok_embeddings.weight": torch.cat(
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
),
"output.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
}
torch.save(state_dict, 'merged.pth')
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--model_size",
choices=["7B", "13B", "30B", "65B"],
)
args = parser.parse_args()
write_model(
input_base_path=os.path.join(args.input_dir, args.model_size),
model_size=args.model_size,
)
if __name__ == "__main__":
main()