We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
A few bugs emerged from CI. We need to update both the branch-0.11 and branch-0.12 branches.
branch-0.11
branch-0.12
06_Introduction_to_Supervised_Learning-test.py in <module> 338 n_neighbors = 3 339 --> 340 distances, indices = knn.kneighbors(X_df, k=n_neighbors) 341 342 cuml/neighbors/nearest_neighbors.pyx in cuml.neighbors.nearest_neighbors.NearestNeighbors.kneighbors() TypeError: kneighbors() got an unexpected keyword argument 'k'
TypeError Traceback (most recent call last) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/column/column.py in as_column(arbitrary, nan_as_null, dtype, name) 1384 data = as_column( -> 1385 memoryview(arbitrary), dtype=dtype, nan_as_null=nan_as_null 1386 ) TypeError: memoryview: a bytes-like object is required, not 'tuple' During handling of the above exception, another exception occurred: ArrowInvalid Traceback (most recent call last) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/column/column.py in as_column(arbitrary, nan_as_null, dtype, name) 1401 data = as_column( -> 1402 pa.array(arbitrary, type=pa_type, from_pandas=nan_as_null), 1403 dtype=dtype, /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib.array() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowInvalid: Cannot mix NumPy dtypes int64 and datetime64 During handling of the above exception, another exception occurred: ArrowInvalid Traceback (most recent call last) /tmp/02_Introduction_to_cuDF-test.py in <module> 169 170 --> 171 df = cudf.DataFrame([('id', ids), ('timestamp', timestamps_np)]) 172 print(df) 173 /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/dataframe.py in __init__(self, data, index, columns, dtype) 183 184 for i, (col_name, series) in enumerate(data): --> 185 self.insert(i, col_name, series, forceindex=index is not None) 186 187 self._add_empty_columns(columns, index) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/dataframe.py in insert(self, loc, column, value, forceindex) 1557 ) 1558 self._cols[column] = self._prepare_series_for_add( -> 1559 value, forceindex=forceindex, name=column 1560 ) 1561 keys = list(self._cols.keys()) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/dataframe.py in _prepare_series_for_add(self, col, forceindex, name) 1516 if (not SCALAR) and (name is None) and hasattr(col, "name"): 1517 name = col.name -> 1518 series = Series(col, name=name) if not SCALAR else col 1519 self._sanitize_columns(series) 1520 series = self._sanitize_values(series, SCALAR) /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/series.py in __init__(self, data, index, name, nan_as_null, dtype) 122 if not isinstance(data, column.TypedColumnBase): 123 data = column.as_column( --> 124 data, nan_as_null=nan_as_null, dtype=dtype, name=name 125 ) 126 /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/column/column.py in as_column(arbitrary, nan_as_null, dtype, name) 1414 data = as_column( 1415 np.array(arbitrary, dtype=np_type), -> 1416 nan_as_null=nan_as_null, 1417 ) 1418 if hasattr(data, "name") and (name is not None): /opt/conda/envs/rapids/lib/python3.6/site-packages/cudf/core/column/column.py in as_column(arbitrary, nan_as_null, dtype, name) 1224 data = datetime.DatetimeColumn.from_numpy(arbitrary) 1225 elif arbitrary.dtype.kind in ("O", "U"): -> 1226 data = as_column(pa.Array.from_pandas(arbitrary)) 1227 else: 1228 data = as_column(rmm.to_device(arbitrary), nan_as_null=nan_as_null) /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib.Array.from_pandas() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib.array() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() /opt/conda/envs/rapids/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowInvalid: only handle 1-dimensional arrays
The text was updated successfully, but these errors were encountered:
No branches or pull requests
A few bugs emerged from CI. We need to update both the
branch-0.11
andbranch-0.12
branches.The text was updated successfully, but these errors were encountered: