-
Notifications
You must be signed in to change notification settings - Fork 844
/
spi.pio
168 lines (141 loc) · 6.53 KB
/
spi.pio
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
;
; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
;
; SPDX-License-Identifier: BSD-3-Clause
;
; These programs implement full-duplex SPI, with a SCK period of 4 clock
; cycles. A different program is provided for each value of CPHA, and CPOL is
; achieved using the hardware GPIO inversion available in the IO controls.
;
; Transmit-only SPI can go twice as fast -- see the ST7789 example!
.pio_version 0 // only requires PIO version 0
.program spi_cpha0
.side_set 1
; Pin assignments:
; - SCK is side-set pin 0
; - MOSI is OUT pin 0
; - MISO is IN pin 0
;
; Autopush and autopull must be enabled, and the serial frame size is set by
; configuring the push/pull threshold. Shift left/right is fine, but you must
; justify the data yourself. This is done most conveniently for frame sizes of
; 8 or 16 bits by using the narrow store replication and narrow load byte
; picking behaviour of RP2040's IO fabric.
; Clock phase = 0: data is captured on the leading edge of each SCK pulse, and
; transitions on the trailing edge, or some time before the first leading edge.
out pins, 1 side 0 [1] ; Stall here on empty (sideset proceeds even if
in pins, 1 side 1 [1] ; instruction stalls, so we stall with SCK low)
.program spi_cpha1
.side_set 1
; Clock phase = 1: data transitions on the leading edge of each SCK pulse, and
; is captured on the trailing edge.
out x, 1 side 0 ; Stall here on empty (keep SCK deasserted)
mov pins, x side 1 [1] ; Output data, assert SCK (mov pins uses OUT mapping)
in pins, 1 side 0 ; Input data, deassert SCK
% c-sdk {
#include "hardware/gpio.h"
static inline void pio_spi_init(PIO pio, uint sm, uint prog_offs, uint n_bits,
float clkdiv, bool cpha, bool cpol, uint pin_sck, uint pin_mosi, uint pin_miso) {
pio_sm_config c = cpha ? spi_cpha1_program_get_default_config(prog_offs) : spi_cpha0_program_get_default_config(prog_offs);
sm_config_set_out_pins(&c, pin_mosi, 1);
sm_config_set_in_pins(&c, pin_miso);
sm_config_set_sideset_pins(&c, pin_sck);
// Only support MSB-first in this example code (shift to left, auto push/pull, threshold=nbits)
sm_config_set_out_shift(&c, false, true, n_bits);
sm_config_set_in_shift(&c, false, true, n_bits);
sm_config_set_clkdiv(&c, clkdiv);
// MOSI, SCK output are low, MISO is input
pio_sm_set_pins_with_mask(pio, sm, 0, (1u << pin_sck) | (1u << pin_mosi));
pio_sm_set_pindirs_with_mask(pio, sm, (1u << pin_sck) | (1u << pin_mosi), (1u << pin_sck) | (1u << pin_mosi) | (1u << pin_miso));
pio_gpio_init(pio, pin_mosi);
pio_gpio_init(pio, pin_miso);
pio_gpio_init(pio, pin_sck);
// The pin muxes can be configured to invert the output (among other things
// and this is a cheesy way to get CPOL=1
gpio_set_outover(pin_sck, cpol ? GPIO_OVERRIDE_INVERT : GPIO_OVERRIDE_NORMAL);
// SPI is synchronous, so bypass input synchroniser to reduce input delay.
hw_set_bits(&pio->input_sync_bypass, 1u << pin_miso);
pio_sm_init(pio, sm, prog_offs, &c);
pio_sm_set_enabled(pio, sm, true);
}
%}
; SPI with Chip Select
; -----------------------------------------------------------------------------
;
; For your amusement, here are some SPI programs with an automatic chip select
; (asserted once data appears in TX FIFO, deasserts when FIFO bottoms out, has
; a nice front/back porch).
;
; The number of bits per FIFO entry is configured via the Y register
; and the autopush/pull threshold. From 2 to 32 bits.
;
; Pin assignments:
; - SCK is side-set bit 0
; - CSn is side-set bit 1
; - MOSI is OUT bit 0 (host-to-device)
; - MISO is IN bit 0 (device-to-host)
;
; This program only supports one chip select -- use GPIO if more are needed
;
; Provide a variation for each possibility of CPHA; for CPOL we can just
; invert SCK in the IO muxing controls (downstream from PIO)
; CPHA=0: data is captured on the leading edge of each SCK pulse (including
; the first pulse), and transitions on the trailing edge
.program spi_cpha0_cs
.side_set 2
.wrap_target
bitloop:
out pins, 1 side 0x0 [1]
in pins, 1 side 0x1
jmp x-- bitloop side 0x1
out pins, 1 side 0x0
mov x, y side 0x0 ; Reload bit counter from Y
in pins, 1 side 0x1
jmp !osre bitloop side 0x1 ; Fall-through if TXF empties
nop side 0x0 [1] ; CSn back porch
public entry_point: ; Must set X,Y to n-2 before starting!
pull ifempty side 0x2 [1] ; Block with CSn high (minimum 2 cycles)
.wrap ; Note ifempty to avoid time-of-check race
; CPHA=1: data transitions on the leading edge of each SCK pulse, and is
; captured on the trailing edge
.program spi_cpha1_cs
.side_set 2
.wrap_target
bitloop:
out pins, 1 side 0x1 [1]
in pins, 1 side 0x0
jmp x-- bitloop side 0x0
out pins, 1 side 0x1
mov x, y side 0x1
in pins, 1 side 0x0
jmp !osre bitloop side 0x0
public entry_point: ; Must set X,Y to n-2 before starting!
pull ifempty side 0x2 [1] ; Block with CSn high (minimum 2 cycles)
nop side 0x0 [1]; CSn front porch
.wrap
% c-sdk {
#include "hardware/gpio.h"
static inline void pio_spi_cs_init(PIO pio, uint sm, uint prog_offs, uint n_bits, float clkdiv, bool cpha, bool cpol,
uint pin_sck, uint pin_mosi, uint pin_miso) {
pio_sm_config c = cpha ? spi_cpha1_cs_program_get_default_config(prog_offs) : spi_cpha0_cs_program_get_default_config(prog_offs);
sm_config_set_out_pins(&c, pin_mosi, 1);
sm_config_set_in_pins(&c, pin_miso);
sm_config_set_sideset_pins(&c, pin_sck);
sm_config_set_out_shift(&c, false, true, n_bits);
sm_config_set_in_shift(&c, false, true, n_bits);
sm_config_set_clkdiv(&c, clkdiv);
pio_sm_set_pins_with_mask(pio, sm, (2u << pin_sck), (3u << pin_sck) | (1u << pin_mosi));
pio_sm_set_pindirs_with_mask(pio, sm, (3u << pin_sck) | (1u << pin_mosi), (3u << pin_sck) | (1u << pin_mosi) | (1u << pin_miso));
pio_gpio_init(pio, pin_mosi);
pio_gpio_init(pio, pin_miso);
pio_gpio_init(pio, pin_sck);
pio_gpio_init(pio, pin_sck + 1);
gpio_set_outover(pin_sck, cpol ? GPIO_OVERRIDE_INVERT : GPIO_OVERRIDE_NORMAL);
hw_set_bits(&pio->input_sync_bypass, 1u << pin_miso);
uint entry_point = prog_offs + (cpha ? spi_cpha1_cs_offset_entry_point : spi_cpha0_cs_offset_entry_point);
pio_sm_init(pio, sm, entry_point, &c);
pio_sm_exec(pio, sm, pio_encode_set(pio_x, n_bits - 2));
pio_sm_exec(pio, sm, pio_encode_set(pio_y, n_bits - 2));
pio_sm_set_enabled(pio, sm, true);
}
%}