-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSentimentAnalyzer.py
245 lines (172 loc) · 8.87 KB
/
SentimentAnalyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import boto3
import time
import uuid
import json
import urllib.request
from datetime import datetime
from PropertyReader import PropertyReader
from botocore.exceptions import ClientError
class SentimentAnalyzer(object):
def __init__(self, parsed_audio_file_url):
self.parsed_audio_file_url = parsed_audio_file_url
def _upload_audio(self):
env_props = PropertyReader().read_properties_file()
s3_client = boto3.client(
's3',
aws_access_key_id=env_props.get('aws_access_id'),
aws_secret_access_key=env_props.get('aws_access_key'),
region_name=env_props.get('aws_region')
)
#File served in URL pre-processing logic
full_file_name = str(datetime.now()) + ".mp3";
full_file_path = os.path.join(env_props.get('local_file_path'), full_file_name)
retrieved_file_path = urllib.request.urlretrieve(self.parsed_audio_file_url, full_file_path)
try:
#Uploading to S3 AWS logic
bucket_key = full_file_name #Bucket key is generated as current timestamp
bucket_name = env_props.get('aws_audio_log_bucket')
s3_client.create_bucket(Bucket=bucket_name)
s3_client.upload_file(full_file_path,bucket_name,bucket_key)
#Removing processed file
if os.path.isfile(full_file_path):
os.remove(full_file_path)
success_result = dict();
success_result['status'] = True
success_result['bucket_key'] = bucket_key
success_result['bucket_name'] = bucket_name
return success_result
except ClientError as e:
print("Unexpected Error Occurred: %s" % e)
error_result = dict();
error_result['status'] = False
return error_result
def _start_transcription(self, bucket_key, wait_process=True):
env_props = PropertyReader().read_properties_file()
transcribe_client = boto3.client(
'transcribe',
aws_access_key_id=env_props.get('aws_access_id'),
aws_secret_access_key=env_props.get('aws_access_key'),
region_name=env_props.get('aws_region')
)
transcribe_job_name='transcribe-' + str(uuid.uuid4()) #Unique transcribe job name
audio_file_url='http://s3-' + env_props.get('aws_region') + '.amazonaws.com/' + env_props.get('aws_audio_log_bucket') + '/' + bucket_key
try:
transcribe_client.start_transcription_job(
TranscriptionJobName=transcribe_job_name,
Media={'MediaFileUri': audio_file_url},
MediaFormat='mp3',
LanguageCode='en-US',
OutputBucketName=env_props.get('aws_transcribe_bucket'))
if wait_process:
while True:
status = transcribe_client.get_transcription_job(TranscriptionJobName=transcribe_job_name)
if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']:
break
print("Not ready yet...")
time.sleep(20)
print('Transcription finished')
transcribe_bucket_name_key = transcribe_job_name + '.json'
sucess_result = 'COMPLETED'
return sucess_result, transcribe_bucket_name_key
except ClientError as e:
print("Unexpected Error Occurred: %s" % e)
error_result = 'FAILEDBYEXCEPTION'
return error_result, None
def _get_text_from_json(self, transcribe_saved_bucket_key):
env_props = PropertyReader().read_properties_file()
s3_client = boto3.client(
's3',
aws_access_key_id=env_props.get('aws_access_id'),
aws_secret_access_key=env_props.get('aws_access_key'),
region_name=env_props.get('aws_region')
)
object = s3_client.get_object(Bucket=env_props.get('aws_transcribe_bucket'), Key=transcribe_saved_bucket_key)
serializedObject = object['Body'].read()
data = json.loads(serializedObject)
return data.get('results').get('transcripts')[0].get('transcript')
def _start_comprehend_job(self, text):
"""
Executes sentiment analysis of a text using Amazon Comprehend.
The text can be larger than 5000 bytes (one limitation for each job), as
the function will split it into multiple processes and return a
averaged value for each sentiment.
Parameter
- text (str): The text to be analyzed
Return
- final_dict (dict): Dictionary with the percentage of each one of the 4
sentiments evaluated on Amazon Comprehend model (positive, negative,
neutral, mixed)
"""
env_props = PropertyReader().read_properties_file()
comprehend_client = boto3.client(
'comprehend',
aws_access_key_id=env_props.get('aws_access_id'),
aws_secret_access_key=env_props.get('aws_access_key'),
region_name=env_props.get('aws_region')
)
try:
list_parts = []
text_for_analysis = ''
for sentence in text.split('.'):
current_text = text_for_analysis + f'{sentence}.'
if len(current_text.encode('utf-8')) > 5000:
list_parts.append([len(text_for_analysis), text_for_analysis])
text_for_analysis = f'{sentence}.'
else:
text_for_analysis += f'{sentence}.'
list_parts.append([len(text_for_analysis), text_for_analysis])
dict_comprehend = {}
for t_parts in list_parts:
sentimentData = comprehend_client.detect_sentiment(Text=t_parts[1], LanguageCode='en')
dict_comprehend[t_parts[0]] = sentimentData
dict_comprehend[t_parts[0]]['ratio'] = t_parts[0]/float(len(text))
final_dict = {'Positive':0, 'Negative':0, 'Neutral':0, 'Mixed':0}
list_sentiments = ['Positive', 'Negative', 'Neutral', 'Mixed']
for sentiment in list_sentiments:
for key, value in dict_comprehend.items():
final_dict[sentiment] += value.get('SentimentScore').get(sentiment) * value.get('ratio')
return final_dict, None
except ClientError as e:
print("Unexpected Error Occurred: %s" % e)
return None, True
def sentiment_analyze_invoke(self):
audio_upload_to_s3 = self._upload_audio()
if (audio_upload_to_s3["status"]):
bucket_key=audio_upload_to_s3["bucket_key"]
bucket_name=audio_upload_to_s3["bucket_name"]
status, transcribe_bucket_name_key = self._start_transcription(bucket_key)
if status == 'COMPLETED':
print('Transcribe Job Completion - SUCCESS')
transcript_text = self._get_text_from_json(transcribe_bucket_name_key)
sentiment_result, error = self._start_comprehend_job(transcript_text)
if (sentiment_result):
print('Comprehend Job Completion - SUCCESS')
success_result = dict();
success_result['status'] = True
success_result['sentiment'] = sentiment_result
return success_result
else:
print('Comprehend Sentiment Extraction - FAILED')
comprehend_error_result = dict();
comprehend_error_result['status'] = False
comprehend_error_result['error'] = 'Error in extracting sentiment from Comprehend'
return comprehend_error_result
elif status == 'FAILED':
print('Transcribe Job Completion - FAILED')
transcribe_upload_error_result = dict();
transcribe_upload_error_result['status'] = False
transcribe_upload_error_result['error'] = 'Error in uploading file to Transcribe'
return transcribe_upload_error_result
else:
print('Transcribe Internal Error - FAILED')
transcribe_internal_error_result = dict();
transcribe_internal_error_result['status'] = False
transcribe_internal_error_result['error'] = 'Internal Error in uploading file to Transcribe'
return transcribe_internal_error_result
else:
print('Audio File to S3 Upload - FAILED')
s3_upload_error_result = dict();
s3_upload_error_result['status'] = False
s3_upload_error_result['error'] = 'Error in file uploading to S3'
return s3_upload_error_result