diff --git a/models/coco/VGG16/fast_rcnn/test_rpn.prototxt b/models/coco/VGG16/fast_rcnn/test_rpn.prototxt new file mode 100644 index 000000000..df42e3c72 --- /dev/null +++ b/models/coco/VGG16/fast_rcnn/test_rpn.prototxt @@ -0,0 +1,587 @@ +name: "VGG_ILSVRC_16_layers" + +input: "data" +input_shape { + dim: 1 + dim: 3 + dim: 224 + dim: 224 +} + +input: "im_info" +input_shape { + dim: 1 + dim: 3 +} + +#input: "rois" +#input_shape { +# dim: 1 # to be changed on-the-fly to num ROIs +# dim: 5 # [batch ind, x1, y1, x2, y2] zero-based indexing +#} + +layer { + name: "conv1_1" + type: "Convolution" + bottom: "data" + top: "conv1_1" + param { + lr_mult: 0 + decay_mult: 0 + } + param { + lr_mult: 0 + decay_mult: 0 + } + convolution_param { + num_output: 64 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu1_1" + type: "ReLU" + bottom: "conv1_1" + top: "conv1_1" +} +layer { + name: "conv1_2" + type: "Convolution" + bottom: "conv1_1" + top: "conv1_2" + param { + lr_mult: 0 + decay_mult: 0 + } + param { + lr_mult: 0 + decay_mult: 0 + } + convolution_param { + num_output: 64 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu1_2" + type: "ReLU" + bottom: "conv1_2" + top: "conv1_2" +} +layer { + name: "pool1" + type: "Pooling" + bottom: "conv1_2" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 2 + stride: 2 + } +} +layer { + name: "conv2_1" + type: "Convolution" + bottom: "pool1" + top: "conv2_1" + param { + lr_mult: 0 + decay_mult: 0 + } + param { + lr_mult: 0 + decay_mult: 0 + } + convolution_param { + num_output: 128 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu2_1" + type: "ReLU" + bottom: "conv2_1" + top: "conv2_1" +} +layer { + name: "conv2_2" + type: "Convolution" + bottom: "conv2_1" + top: "conv2_2" + param { + lr_mult: 0 + decay_mult: 0 + } + param { + lr_mult: 0 + decay_mult: 0 + } + convolution_param { + num_output: 128 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu2_2" + type: "ReLU" + bottom: "conv2_2" + top: "conv2_2" +} +layer { + name: "pool2" + type: "Pooling" + bottom: "conv2_2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 2 + stride: 2 + } +} +layer { + name: "conv3_1" + type: "Convolution" + bottom: "pool2" + top: "conv3_1" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu3_1" + type: "ReLU" + bottom: "conv3_1" + top: "conv3_1" +} +layer { + name: "conv3_2" + type: "Convolution" + bottom: "conv3_1" + top: "conv3_2" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu3_2" + type: "ReLU" + bottom: "conv3_2" + top: "conv3_2" +} +layer { + name: "conv3_3" + type: "Convolution" + bottom: "conv3_2" + top: "conv3_3" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu3_3" + type: "ReLU" + bottom: "conv3_3" + top: "conv3_3" +} +layer { + name: "pool3" + type: "Pooling" + bottom: "conv3_3" + top: "pool3" + pooling_param { + pool: MAX + kernel_size: 2 + stride: 2 + } +} +layer { + name: "conv4_1" + type: "Convolution" + bottom: "pool3" + top: "conv4_1" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 512 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu4_1" + type: "ReLU" + bottom: "conv4_1" + top: "conv4_1" +} +layer { + name: "conv4_2" + type: "Convolution" + bottom: "conv4_1" + top: "conv4_2" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 512 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu4_2" + type: "ReLU" + bottom: "conv4_2" + top: "conv4_2" +} +layer { + name: "conv4_3" + type: "Convolution" + bottom: "conv4_2" + top: "conv4_3" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 512 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu4_3" + type: "ReLU" + bottom: "conv4_3" + top: "conv4_3" +} +layer { + name: "pool4" + type: "Pooling" + bottom: "conv4_3" + top: "pool4" + pooling_param { + pool: MAX + kernel_size: 2 + stride: 2 + } +} +layer { + name: "conv5_1" + type: "Convolution" + bottom: "pool4" + top: "conv5_1" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 512 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu5_1" + type: "ReLU" + bottom: "conv5_1" + top: "conv5_1" +} +layer { + name: "conv5_2" + type: "Convolution" + bottom: "conv5_1" + top: "conv5_2" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 512 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu5_2" + type: "ReLU" + bottom: "conv5_2" + top: "conv5_2" +} +layer { + name: "conv5_3" + type: "Convolution" + bottom: "conv5_2" + top: "conv5_3" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + convolution_param { + num_output: 512 + pad: 1 + kernel_size: 3 + } +} +layer { + name: "relu5_3" + type: "ReLU" + bottom: "conv5_3" + top: "conv5_3" +} + +#=============== + + +#========= RPN ============ + +layer { + name: "rpn_conv/3x3" + type: "Convolution" + bottom: "conv5_3" + top: "rpn/output" + convolution_param { + num_output: 512 + kernel_size: 3 pad: 1 stride: 1 + } +} +layer { + name: "rpn_relu/3x3" + type: "ReLU" + bottom: "rpn/output" + top: "rpn/output" +} + +layer { + name: "rpn_cls_score" + type: "Convolution" + bottom: "rpn/output" + top: "rpn_cls_score" + convolution_param { + num_output: 18 # 2(bg/fg) * 9(anchors) + kernel_size: 1 pad: 0 stride: 1 + } +} +layer { + name: "rpn_bbox_pred" + type: "Convolution" + bottom: "rpn/output" + top: "rpn_bbox_pred" + convolution_param { + num_output: 36 # 4 * 9(anchors) + kernel_size: 1 pad: 0 stride: 1 + } +} +layer { + bottom: "rpn_cls_score" + top: "rpn_cls_score_reshape" + name: "rpn_cls_score_reshape" + type: "Reshape" + reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } } +} + +#========= RoI Proposal ============ + +layer { + name: "rpn_cls_prob" + type: "Softmax" + bottom: "rpn_cls_score_reshape" + top: "rpn_cls_prob" +} +layer { + name: 'rpn_cls_prob_reshape' + type: 'Reshape' + bottom: 'rpn_cls_prob' + top: 'rpn_cls_prob_reshape' + reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } } +} +layer { + name: 'proposal' + type: 'Python' + bottom: 'rpn_cls_prob_reshape' + bottom: 'rpn_bbox_pred' + bottom: 'im_info' + top: 'rois' + python_param { + module: 'rpn.proposal_layer' + layer: 'ProposalLayer' + param_str: "'feat_stride': 16" + } +} + +#========= + +layer { + name: "roi_pool5" + type: "ROIPooling" + bottom: "conv5_3" + bottom: "rois" + top: "pool5" + roi_pooling_param { + pooled_w: 7 + pooled_h: 7 + spatial_scale: 0.0625 # 1/16 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + inner_product_param { + num_output: 4096 + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + inner_product_param { + num_output: 4096 + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "cls_score" + type: "InnerProduct" + bottom: "fc7" + top: "cls_score" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + inner_product_param { + num_output: 81 + weight_filler { + type: "gaussian" + std: 0.01 + } + bias_filler { + type: "constant" + value: 0 + } + } +} +layer { + name: "bbox_pred" + type: "InnerProduct" + bottom: "fc7" + top: "bbox_pred" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 2 + decay_mult: 0 + } + inner_product_param { + num_output: 324 + weight_filler { + type: "gaussian" + std: 0.001 + } + bias_filler { + type: "constant" + value: 0 + } + } +} +layer { + name: "cls_prob" + type: "Softmax" + bottom: "cls_score" + top: "cls_prob" +}