-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
214 lines (157 loc) · 7.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import shutil
import sys
import numpy as np
from scipy import sparse
import matplotlib.pyplot as plt
import seaborn as sn
sn.set()
import pandas as pd
import tensorflow as tf
from tensorflow.contrib.layers import apply_regularization, l2_regularizer
import bottleneck as bn
from model import MultiDAE, MultiVAE
from metrics import *
from utils import *
def main(dataset):
pro_dir = load_data(dataset)
#pro_dir = load_netflix_data()
# Model Definition and Training
unique_sid = list()
with open(os.path.join(pro_dir, 'unique_sid.txt'), 'r') as f:
for line in f:
unique_sid.append(line.strip())
n_items = len(unique_sid)
print("NUMERO ITENS: "+str(n_items))
train_data = load_train_data(os.path.join(pro_dir, 'train.csv'),n_items)
vad_data_tr, vad_data_te = load_tr_te_data(os.path.join(pro_dir, 'validation_tr.csv'),
os.path.join(pro_dir, 'validation_te.csv'),
n_items)
N = train_data.shape[0]
idxlist = list(range(N))
# training batch size
batch_size = 500
batches_per_epoch = int(np.ceil(float(N) / batch_size))
N_vad = vad_data_tr.shape[0]
idxlist_vad = list(range(N_vad))
# validation batch size (since the entire validation set might not fit into GPU memory)
batch_size_vad = 2000
# the total number of gradient updates for annealing
total_anneal_steps = 200000
# largest annealing parameter
anneal_cap = 0.2
p_dims = [200, 600, n_items]
#p_dims = [200, 600, batch_size]
tf.reset_default_graph()
vae = MultiVAE(p_dims, lam=0.0, random_seed=98765)
saver, logits_var, loss_var, train_op_var, merged_var = vae.build_graph(2)
ndcg_var = tf.Variable(0.0)
ndcg_dist_var = tf.placeholder(dtype=tf.float64, shape=None)
ndcg_summary = tf.summary.scalar('ndcg_at_k_validation', ndcg_var)
ndcg_dist_summary = tf.summary.histogram('ndcg_at_k_hist_validation', ndcg_dist_var)
merged_valid = tf.summary.merge([ndcg_summary, ndcg_dist_summary])
arch_str = "I-%s-I" % ('-'.join([str(d) for d in vae.dims[1:-1]]))
#log_dir = '/volmount/log/ml-20m/VAE_anneal{}K_cap{:1.1E}/{}'.format(
log_dir = './log/'+dataset+'/VAE_anneal{}K_cap{:1.1E}/{}'.format(
total_anneal_steps/1000, anneal_cap, arch_str)
if os.path.exists(log_dir):
shutil.rmtree(log_dir)
print("log directory: %s" % log_dir)
summary_writer = tf.summary.FileWriter(log_dir, graph=tf.get_default_graph())
#chkpt_dir = '/volmount/chkpt/ml-20m/VAE_anneal{}K_cap{:1.1E}/{}'.format(
chkpt_dir = './chkpt/'+dataset+'/VAE_anneal{}K_cap{:1.1E}/{}'.format(
total_anneal_steps/1000, anneal_cap, arch_str)
if not os.path.isdir(chkpt_dir):
os.makedirs(chkpt_dir)
print("chkpt directory: %s" % chkpt_dir)
n_epochs = 200
ndcgs_vad = []
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
best_ndcg = -np.inf
update_count = 0.0
for epoch in range(n_epochs):
print("epoch: "+str(epoch))
np.random.shuffle(idxlist)
# train for one epoch
for bnum, st_idx in enumerate(range(0, N, batch_size)):
end_idx = min(st_idx + batch_size, N)
X = train_data[idxlist[st_idx:end_idx]]
# X = train_data[train_data.index.isin(idxlist[st_idx:end_idx])]
if sparse.isspmatrix(X):
X = X.toarray()
X = X.astype('float32')
if total_anneal_steps > 0:
anneal = min(anneal_cap, 1. * update_count / total_anneal_steps)
else:
anneal = anneal_cap
feed_dict = {vae.input_ph: X,
vae.keep_prob_ph: 0.5,
vae.anneal_ph: anneal,
vae.is_training_ph: 1}
sess.run(train_op_var, feed_dict=feed_dict)
if bnum % 100 == 0:
summary_train = sess.run(merged_var, feed_dict=feed_dict)
summary_writer.add_summary(summary_train,
global_step=epoch * batches_per_epoch + bnum)
update_count += 1
# compute validation NDCG
ndcg_dist = []
for bnum, st_idx in enumerate(range(0, N_vad, batch_size_vad)):
end_idx = min(st_idx + batch_size_vad, N_vad)
X = vad_data_tr[idxlist_vad[st_idx:end_idx]]
if sparse.isspmatrix(X):
X = X.toarray()
X = X.astype('float32')
pred_val = sess.run(logits_var, feed_dict={vae.input_ph: X} )
# exclude examples from training and validation (if any)
pred_val[X.nonzero()] = -np.inf
ndcg_dist.append(NDCG_binary_at_k_batch(pred_val, vad_data_te[idxlist_vad[st_idx:end_idx]]))
ndcg_dist = np.concatenate(ndcg_dist)
ndcg_ = ndcg_dist.mean()
ndcgs_vad.append(ndcg_)
merged_valid_val = sess.run(merged_valid, feed_dict={ndcg_var: ndcg_, ndcg_dist_var: ndcg_dist})
summary_writer.add_summary(merged_valid_val, epoch)
# update the best model (if necessary)
if ndcg_ > best_ndcg:
saver.save(sess, '{}/model'.format(chkpt_dir))
best_ndcg = ndcg_
print(ndcgs_vad)
# Test data
test_data_tr, test_data_te = load_tr_te_data(
os.path.join(pro_dir, 'test_tr.csv'),
os.path.join(pro_dir, 'test_te.csv'),
n_items)
N_test = test_data_tr.shape[0]
idxlist_test = range(N_test)
batch_size_test = 2000
tf.reset_default_graph()
vae = MultiVAE(p_dims, lam=0.0)
saver, logits_var, _, _, _ = vae.build_graph(0)
chkpt_dir = './chkpt/'+dataset+'/VAE_anneal{}K_cap{:1.1E}/{}'.format(
total_anneal_steps/1000, anneal_cap, arch_str)
print("chkpt directory: %s" % chkpt_dir)
n100_list, r20_list, r50_list = [], [], []
with tf.Session() as sess:
saver.restore(sess, '{}/model'.format(chkpt_dir))
for bnum, st_idx in enumerate(range(0, N_test, batch_size_test)):
end_idx = min(st_idx + batch_size_test, N_test)
X = test_data_tr[idxlist_test[st_idx:end_idx]]
if sparse.isspmatrix(X):
X = X.toarray()
X = X.astype('float32')
pred_val = sess.run(logits_var, feed_dict={vae.input_ph: X})
# exclude examples from training and validation (if any)
pred_val[X.nonzero()] = -np.inf
n100_list.append(NDCG_binary_at_k_batch(pred_val, test_data_te[idxlist_test[st_idx:end_idx]], k=100))
r20_list.append(Recall_at_k_batch(pred_val, test_data_te[idxlist_test[st_idx:end_idx]], k=20))
r50_list.append(Recall_at_k_batch(pred_val, test_data_te[idxlist_test[st_idx:end_idx]], k=50))
n100_list = np.concatenate(n100_list)
r20_list = np.concatenate(r20_list)
r50_list = np.concatenate(r50_list)
print("Test NDCG@100=%.5f (%.5f)" % (np.mean(n100_list), np.std(n100_list) / np.sqrt(len(n100_list))))
print("Test Recall@20=%.5f (%.5f)" % (np.mean(r20_list), np.std(r20_list) / np.sqrt(len(r20_list))))
print("Test Recall@50=%.5f (%.5f)" % (np.mean(r50_list), np.std(r50_list) / np.sqrt(len(r50_list))))
if __name__ == "__main__":
main(sys.argv[1])