-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
440 lines (347 loc) · 18.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import numpy as np
import sys
import pandas as pd
from scipy import sparse
import os
def load_data(dataset):
if dataset == 'netflix': pro_dir = load_netflix_data()
if dataset == 'ml-20m': pro_dir = load_movielens_data()
if dataset == 'msd': pro_dir = load_msd_data()
return pro_dir
def load_netflix_data():
DATA_DIR = '../data/netflix/'
raw_data_train = pd.read_csv(os.path.join(DATA_DIR, 'NF_TRAIN/nf.train.txt'), sep='\t', header=None, names=['userId','movieId','rating'])
raw_data_valid = pd.read_csv(os.path.join(DATA_DIR, 'NF_VALID/nf.valid.txt'), sep='\t', header=None, names=['userId','movieId','rating'])
raw_data_test = pd.read_csv(os.path.join(DATA_DIR, 'NF_TEST/nf.test.txt'), sep='\t', header=None, names=['userId','movieId','rating'])
raw_data = pd.concat([raw_data_train, raw_data_valid, raw_data_test])
pro_dir = os.path.join(DATA_DIR, 'pro_sg')
raw_data = raw_data[raw_data['rating'] > 3.5]
# Only keep items that are clicked on by at least 5 users
raw_data, user_activity, item_popularity = filter_triplets(raw_data)
raw_data = raw_data.sort_values(by=['userId'])
raw_data = raw_data.sort_values(by=['userId','movieId'])
raw_data = raw_data.reset_index(drop=True)
_, _, _ = get_user_by_mean(raw_data)
sparsity = 1. * raw_data.shape[0] / (user_activity.shape[0] * item_popularity.shape[0])
print("After filtering, there are %d watching events from %d users and %d movies (sparsity: %.3f%%)" %
(raw_data.shape[0], user_activity.shape[0], item_popularity.shape[0], sparsity * 100))
unique_uid = user_activity.index
np.random.seed(98765)
idx_perm = np.random.permutation(unique_uid.size)
unique_uid = unique_uid[idx_perm]
# create train/validation/test users
n_users = unique_uid.size
n_heldout_users = 40000
tr_users = unique_uid[:(n_users - n_heldout_users * 2)]
vd_users = unique_uid[(n_users - n_heldout_users * 2): (n_users - n_heldout_users)]
te_users = unique_uid[(n_users - n_heldout_users):]
train_plays = raw_data.loc[raw_data['userId'].isin(tr_users)]
unique_sid = pd.unique(train_plays['movieId'])
show2id = dict((sid, i) for (i, sid) in enumerate(unique_sid))
profile2id = dict((pid, i) for (i, pid) in enumerate(unique_uid))
if not os.path.exists(pro_dir):
os.makedirs(pro_dir)
with open(os.path.join(pro_dir, 'unique_sid.txt'), 'w') as f:
for sid in unique_sid:
f.write('%s\n' % sid)
vad_plays = raw_data.loc[raw_data['userId'].isin(vd_users)]
vad_plays = vad_plays.loc[vad_plays['movieId'].isin(unique_sid)]
vad_plays_tr, vad_plays_te, vad_plays_raw = split_train_test_proportion(vad_plays)
test_plays = raw_data.loc[raw_data['userId'].isin(te_users)]
test_plays = test_plays.loc[test_plays['movieId'].isin(unique_sid)]
test_plays_tr, test_plays_te, test_plays_raw = split_train_test_proportion(test_plays)
user1, user2, user3 = get_user_by_mean(test_plays_raw)
train_data = numerize(train_plays, profile2id, show2id)
train_data.to_csv(os.path.join(pro_dir, 'train.csv'), index=False)
vad_data_tr = numerize(vad_plays_tr, profile2id, show2id)
vad_data_tr.to_csv(os.path.join(pro_dir, 'validation_tr.csv'), index=False)
vad_data_te = numerize(vad_plays_te, profile2id, show2id)
vad_data_te.to_csv(os.path.join(pro_dir, 'validation_te.csv'), index=False)
test_data_tr = numerize(test_plays_tr, profile2id, show2id)
test_data_tr.to_csv(os.path.join(pro_dir, 'test_tr.csv'), index=False)
test_data_te = numerize(test_plays_te, profile2id, show2id)
test_data_te.to_csv(os.path.join(pro_dir, 'test_te.csv'), index=False)
test_data = numerize(test_plays_raw, profile2id, show2id)
test_data.to_csv(os.path.join(pro_dir, 'test.csv'), index=False)
user1 = numerize(user1, profile2id, show2id)
user1.to_csv(os.path.join(pro_dir, 'test_user1.csv'), index=False)
user2 = numerize(user2, profile2id, show2id)
user2.to_csv(os.path.join(pro_dir, 'test_user2.csv'), index=False)
user3 = numerize(user3, profile2id, show2id)
user3.to_csv(os.path.join(pro_dir, 'test_user3.csv'), index=False)
return pro_dir
def load_movielens_data():
DATA_DIR = '../data/ml-20m/'
raw_data = pd.read_csv(os.path.join(DATA_DIR, 'ratings.csv'), header=0)
pro_dir = os.path.join(DATA_DIR, 'pro_sg')
raw_data = raw_data[raw_data['rating'] > 3.5]
# Only keep items that are clicked on by at least 5 users
raw_data, user_activity, item_popularity = filter_triplets(raw_data)
raw_data = raw_data.sort_values(by=['userId','movieId'])
raw_data = raw_data.reset_index(drop=True)
_, _, _ = get_user_by_mean(raw_data)
sparsity = 1. * raw_data.shape[0] / (user_activity.shape[0] * item_popularity.shape[0])
print("After filtering, there are %d watching events from %d users and %d movies (sparsity: %.3f%%)" %
(raw_data.shape[0], user_activity.shape[0], item_popularity.shape[0], sparsity * 100))
unique_uid = user_activity.index
np.random.seed(98765)
idx_perm = np.random.permutation(unique_uid.size)
unique_uid = unique_uid[idx_perm]
# create train/validation/test users
n_users = unique_uid.size
n_heldout_users = 10000
tr_users = unique_uid[:(n_users - n_heldout_users * 2)]
vd_users = unique_uid[(n_users - n_heldout_users * 2): (n_users - n_heldout_users)]
te_users = unique_uid[(n_users - n_heldout_users):]
train_plays = raw_data.loc[raw_data['userId'].isin(tr_users)]
unique_sid = pd.unique(train_plays['movieId'])
show2id = dict((sid, i) for (i, sid) in enumerate(unique_sid))
profile2id = dict((pid, i) for (i, pid) in enumerate(unique_uid))
if not os.path.exists(pro_dir):
os.makedirs(pro_dir)
with open(os.path.join(pro_dir, 'unique_sid.txt'), 'w') as f:
for sid in unique_sid:
f.write('%s\n' % sid)
vad_plays = raw_data.loc[raw_data['userId'].isin(vd_users)]
vad_plays = vad_plays.loc[vad_plays['movieId'].isin(unique_sid)]
vad_plays_tr, vad_plays_te, vad_plays_raw = split_train_test_proportion(vad_plays)
test_plays = raw_data.loc[raw_data['userId'].isin(te_users)]
test_plays = test_plays.loc[test_plays['movieId'].isin(unique_sid)]
test_plays_tr, test_plays_te, test_plays_raw = split_train_test_proportion(test_plays)
user1, user2, user3 = get_user_by_mean(test_plays_raw)
train_data = numerize(train_plays, profile2id, show2id)
train_data.to_csv(os.path.join(pro_dir, 'train.csv'), index=False)
vad_data_tr = numerize(vad_plays_tr, profile2id, show2id)
vad_data_tr.to_csv(os.path.join(pro_dir, 'validation_tr.csv'), index=False)
vad_data_te = numerize(vad_plays_te, profile2id, show2id)
vad_data_te.to_csv(os.path.join(pro_dir, 'validation_te.csv'), index=False)
test_data_tr = numerize(test_plays_tr, profile2id, show2id)
test_data_tr.to_csv(os.path.join(pro_dir, 'test_tr.csv'), index=False)
test_data_te = numerize(test_plays_te, profile2id, show2id)
test_data_te.to_csv(os.path.join(pro_dir, 'test_te.csv'), index=False)
test_data = numerize(test_plays_raw, profile2id, show2id)
test_data.to_csv(os.path.join(pro_dir, 'test.csv'), index=False)
user1 = numerize(user1, profile2id, show2id)
user1.to_csv(os.path.join(pro_dir, 'test_user1.csv'), index=False)
user2 = numerize(user2, profile2id, show2id)
user2.to_csv(os.path.join(pro_dir, 'test_user2.csv'), index=False)
user3 = numerize(user3, profile2id, show2id)
user3.to_csv(os.path.join(pro_dir, 'test_user3.csv'), index=False)
return pro_dir
def load_msd_data():
DATA_DIR = '../data/msd/'
raw_data = pd.read_csv(os.path.join(DATA_DIR, 'train_triplets-random.txt'), sep='\t', header=None, names=['userId','movieId','rating'])
pro_dir = os.path.join(DATA_DIR, 'pro_sg')
#raw_data = raw_data[raw_data['rating'] > 3.5]
# Only keep items that are clicked on by at least 5 users
raw_data, user_activity, item_popularity = filter_triplets(raw_data, 20, 200)
raw_data = raw_data.sort_values(by=['userId','movieId'])
raw_data = raw_data.reset_index(drop=True)
_, _, _ = get_user_by_mean(raw_data)
sparsity = 1. * raw_data.shape[0] / (user_activity.shape[0] * item_popularity.shape[0])
print("After filtering, there are %d watching events from %d users and %d movies (sparsity: %.3f%%)" %
(raw_data.shape[0], user_activity.shape[0], item_popularity.shape[0], sparsity * 100))
unique_uid = user_activity.index
np.random.seed(98765)
idx_perm = np.random.permutation(unique_uid.size)
unique_uid = unique_uid[idx_perm]
# create train/validation/test users
n_users = unique_uid.size
n_heldout_users = 50000
tr_users = unique_uid[:(n_users - n_heldout_users * 2)]
vd_users = unique_uid[(n_users - n_heldout_users * 2): (n_users - n_heldout_users)]
te_users = unique_uid[(n_users - n_heldout_users):]
train_plays = raw_data.loc[raw_data['userId'].isin(tr_users)]
unique_sid = pd.unique(train_plays['movieId'])
show2id = dict((sid, i) for (i, sid) in enumerate(unique_sid))
profile2id = dict((pid, i) for (i, pid) in enumerate(unique_uid))
if not os.path.exists(pro_dir):
os.makedirs(pro_dir)
with open(os.path.join(pro_dir, 'unique_sid.txt'), 'w') as f:
for sid in unique_sid:
f.write('%s\n' % sid)
vad_plays = raw_data.loc[raw_data['userId'].isin(vd_users)]
vad_plays = vad_plays.loc[vad_plays['movieId'].isin(unique_sid)]
vad_plays_tr, vad_plays_te, vad_plays_raw = split_train_test_proportion(vad_plays)
test_plays = raw_data.loc[raw_data['userId'].isin(te_users)]
test_plays = test_plays.loc[test_plays['movieId'].isin(unique_sid)]
test_plays_tr, test_plays_te, test_plays_raw = split_train_test_proportion(test_plays)
user1, user2, user3 = get_user_by_mean(test_plays_raw)
train_data = numerize(train_plays, profile2id, show2id)
train_data.to_csv(os.path.join(pro_dir, 'train.csv'), index=False)
vad_data_tr = numerize(vad_plays_tr, profile2id, show2id)
vad_data_tr.to_csv(os.path.join(pro_dir, 'validation_tr.csv'), index=False)
vad_data_te = numerize(vad_plays_te, profile2id, show2id)
vad_data_te.to_csv(os.path.join(pro_dir, 'validation_te.csv'), index=False)
test_data_tr = numerize(test_plays_tr, profile2id, show2id)
test_data_tr.to_csv(os.path.join(pro_dir, 'test_tr.csv'), index=False)
test_data_te = numerize(test_plays_te, profile2id, show2id)
test_data_te.to_csv(os.path.join(pro_dir, 'test_te.csv'), index=False)
test_data = numerize(test_plays_raw, profile2id, show2id)
test_data.to_csv(os.path.join(pro_dir, 'test.csv'), index=False)
user1 = numerize(user1, profile2id, show2id)
user1.to_csv(os.path.join(pro_dir, 'test_user1.csv'), index=False)
user2 = numerize(user2, profile2id, show2id)
user2.to_csv(os.path.join(pro_dir, 'test_user2.csv'), index=False)
user3 = numerize(user3, profile2id, show2id)
user3.to_csv(os.path.join(pro_dir, 'test_user3.csv'), index=False)
return pro_dir
def get_count(tp, id):
playcount_groupbyid = tp[[id]].groupby(id, as_index=False)
count = playcount_groupbyid.size()
return count
def get_ratings_histogram(data, labels):
user_type = []
data_grouped_by_rating = data.groupby('rating')
for i, (_, group) in enumerate(data_grouped_by_rating):
user_type.append(len(group['rating']))
plot_bar_graph(user_type, labels)
return 0
def get_user_by_mean(data):
df1 = data.groupby('userId').size()
quant1 = np.quantile(df1.values,1/3)
quant2 = np.quantile(df1.values,2/3)
print(quant1,quant2)
user1 = data.loc[data['userId'].isin(df1[df1 < quant1].index.values)]
l1 = list(df1[df1 >= quant1].index.values)
l2 = list(df1[df1 < quant2].index.values)
user2 = data.loc[data['userId'].isin(np.intersect1d(l1,l2))]
user3 = data.loc[data['userId'].isin(df1[df1 >= quant2].index.values)]
print(len(set(user1['userId'])),len(set(user2['userId'])),len(set(user3['userId'])))
return user1, user2, user3
def filter_triplets(tp, min_uc=5, min_sc=0):
# Only keep the triplets for items which were clicked on by at least min_sc users.
if min_sc > 0:
itemcount = get_count(tp, 'movieId')
tp = tp[tp['movieId'].isin(itemcount.index[itemcount >= min_sc])]
# Only keep the triplets for users who clicked on at least min_uc items
# After doing this, some of the items will have less than min_uc users, but should only be a small proportion
if min_uc > 0:
usercount = get_count(tp, 'userId')
tp = tp[tp['userId'].isin(usercount.index[usercount >= min_uc])]
# Update both usercount and itemcount after filtering
usercount, itemcount = get_count(tp, 'userId'), get_count(tp, 'movieId')
return tp, usercount, itemcount
def split_train_test_proportion(data, test_prop=0.2):
data_grouped_by_user = data.groupby('userId')
tr_list, te_list, raw_list = list(), list(), list()
np.random.seed(98765)
for i, (_, group) in enumerate(data_grouped_by_user):
n_items_u = len(group)
if n_items_u >= 5:
idx = np.zeros(n_items_u, dtype='bool')
idx[np.random.choice(n_items_u, size=int(test_prop * n_items_u), replace=False).astype('int64')] = True
tr_list.append(group[np.logical_not(idx)])
te_list.append(group[idx])
raw_list.append(group)
else:
tr_list.append(group)
raw_list.append(group)
if i % 1000 == 0:
print("%d users sampled" % i)
sys.stdout.flush()
data_tr = pd.concat(tr_list)
data_te = pd.concat(te_list)
data_raw = pd.concat(raw_list)
return data_tr, data_te, data_raw
def numerize(tp, profile2id, show2id):
uid = list(map(lambda x: profile2id[x], tp['userId']))
sid = list(map(lambda x: show2id[x], tp['movieId']))
return pd.DataFrame(data={'uid': uid, 'sid': sid}, columns=['uid', 'sid'])
def numerize_test(tp, profile2id, show2id):
uid = list(map(lambda x: profile2id[x], tp['uid']))
sid = list(map(lambda x: show2id[x], tp['sid']))
return pd.DataFrame(data={'uid': uid, 'sid': sid}, columns=['uid', 'sid'])
def load_train_data(csv_file,n_items):
tp = pd.read_csv(csv_file)
n_users = tp['uid'].max() + 1
rows, cols = tp['uid'], tp['sid']
data = sparse.csr_matrix((np.ones_like(rows),
(rows, cols)), dtype='float64',
shape=(n_users, n_items))
return data
def load_test_data(csv_file,n_items):
tp = pd.read_csv(csv_file)
tp = tp.sort_values(by=['uid','sid'])
tp = tp.reset_index(drop=True)
n_users = set(tp['uid'].values)
profile2id = dict((pid, i) for (i, pid) in enumerate(n_users))
show2id = dict((sid, i) for (i, sid) in enumerate(range(n_items)))
tp = numerize_test(tp, profile2id, show2id)
start_idx = tp['uid'].min()
end_idx = tp['uid'].max()
rows, cols = tp['uid'] - start_idx, tp['sid']
data = sparse.csr_matrix((np.ones_like(rows),
(rows, cols)), dtype='float64',
#shape=(end_idx - start_idx + 1, n_items))
shape=(end_idx + 1, n_items))
return data
def load_tr_te_data(csv_file_tr, csv_file_te, n_items):
tp_tr = pd.read_csv(csv_file_tr)
tp_te = pd.read_csv(csv_file_te)
start_idx = min(tp_tr['uid'].min(), tp_te['uid'].min())
end_idx = max(tp_tr['uid'].max(), tp_te['uid'].max())
rows_tr, cols_tr = tp_tr['uid'] - start_idx, tp_tr['sid']
rows_te, cols_te = tp_te['uid'] - start_idx, tp_te['sid']
data_tr = sparse.csr_matrix((np.ones_like(rows_tr),
(rows_tr, cols_tr)), dtype='float64', shape=(end_idx - start_idx + 1, n_items))
data_te = sparse.csr_matrix((np.ones_like(rows_te),
(rows_te, cols_te)), dtype='float64', shape=(end_idx - start_idx + 1, n_items))
return data_tr, data_te
def plot_curve(ufair,ndcg):
import matplotlib.pyplot as plt
fig,ax = plt.subplots()
plt.plot( range(len(ufair)), ufair)
plt.plot( range(len(ndcg)), ndcg)
#plt.ylabel("Validation NDCG@100")
#plt.xlabel("Epochs")
#plt.savefig('novelty.pdf', bbox_inches='tight')
plt.show()
def set_box_color(bp, color):
import matplotlib.pyplot as plt
plt.setp(bp['boxes'], color=color)
plt.setp(bp['whiskers'], color=color)
plt.setp(bp['caps'], color=color)
plt.setp(bp['medians'], color=color)
def plot_comparison(data_a, data_b, ticks, dataset, test_file):
import matplotlib.pyplot as plt
plt.figure()
bpl = plt.boxplot(data_a, positions=np.array(range(len(data_a)))*2.0-0.4, sym='', widths=0.6)
bpr = plt.boxplot(data_b, positions=np.array(range(len(data_b)))*2.0+0.4, sym='', widths=0.6)
#bpr = plt.boxplot(data_c, positions=np.array(range(len(data_b)))*2.0+0.4, sym='', widths=0.6)
set_box_color(bpl, '#D7191C') # colors are from http://colorbrewer2.org/
set_box_color(bpr, '#2C7BB6')
#set_box_color(bpr, '#2C7BB6')
# draw temporary red and blue lines and use them to create a legend
plt.plot([], c='#D7191C', label='Unfairness@100')
plt.plot([], c='#2C7BB6', label='1 - NDCG@100')
#plt.plot([], c='#2C7BB6', label='CNN + STFT')
plt.legend()
plt.xticks(range(0, len(ticks) * 2, 2), ticks)
plt.xlim(-2, len(ticks)*2)
plt.ylim(-0.05,0.40)
#plt.ylim(np.min(np.concatenate((data_a,data_b),axis=1)), np.max(np.concatenate((data_a,data_b),axis=1)))
plt.tight_layout()
plt.savefig('plots/boxcompare_'+dataset+'_'+test_file+'.pdf')
def plot_sorted_preds(preds):
import matplotlib.pyplot as plt
fig,ax = plt.subplots()
plt.plot( range(len(preds)), sorted(preds)[::-1])
plt.ylabel("Scores")
plt.xlabel("Items")
plt.savefig('preds_sorted.pdf', bbox_inches='tight')
#plt.show()
def plot_bar_graph(data, labels):
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
plt.bar(np.arange(len(data)),data)
plt.xticks(np.arange(len(data)),labels)
#plt.show()
plt.savefig('ratings_hist.pdf', bbox_inches='tight')
def plot_histogram(data):
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
print(max(data))
plt.hist(data,int(max(data)))
#plt.show()
plt.savefig('user_hist.pdf', bbox_inches='tight')