-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmlp_examples.py
486 lines (348 loc) · 11.4 KB
/
mlp_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#!/usr/bin/env python
# coding: utf-8
# # MLP with:
# ### 1. Own implementation of a MLP class
# ### 2. numpy
# ### 3. Pytorch tensors
# ### 4. Pytorch CUDA tensor
# ### 5. Pytorch framework
# ### 6. Pytorch framework (CUDA)
#
#
# Comparison on different implementations of a MLP, modified from: https://github.com/jcjohnson/pytorch-examples
# A MLP 3 layers [784, 100, 10] is used as example, no bias elements added to the input layers
# In[1]:
get_ipython().run_line_magic('matplotlib', 'notebook')
import numpy as np
import pickle, gzip
import mlp
import matplotlib.pyplot as plt
import torch
import time
import os
import urllib.request
# ## Parameters of MLP
# * __Number of layers__ : 3 (input, hidden1, output)
# * __Elements in layers__ : [784, 100, 10]
# * __Activation function__ : Rectified Linear function
# * __Regularization parameter__ : 0
# * __Bias element added in input layers__ : False
#
# In[2]:
# Useful functions
def initalize_weights_relu(size_layer, size_next_layer):
np.random.seed(5)
# Method presented in "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classfication"
# He et Al. 2015
epsilon = np.sqrt(2.0 / (size_layer * size_next_layer) )
# Weigts from Normal distribution mean = 0, std = epsion
w = epsilon * (np.random.randn(size_next_layer, size_layer))
return w.transpose()
def load_mnist():
# Download MNIST data if needed
mnist_filename = 'mnist.pkl.gz'
if not os.path.exists(mnist_filename):
ulr_mnist = 'http://deeplearning.net/data/mnist/mnist.pkl.gz'
urllib.request.urlretrieve(ulr_mnist, mnist_filename)
# Import MNIST data
with gzip.open('mnist.pkl.gz', 'rb') as f:
train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
# Training data, only
X = valid_set[0]
y = valid_set[1]
# change y [1D] to Y [2D] sparse array coding class
n_examples = len(y)
labels = np.unique(y)
Y = np.zeros((n_examples, len(labels)))
for ix_label in range(len(labels)):
# Find examples with with a Label = lables(ix_label)
ix_tmp = np.where(y == labels[ix_label])[0]
Y[ix_tmp, ix_label] = 1
return X, Y, labels, y
# In[3]:
# Training with 400 epochs
epochs = 400
loss = np.zeros([epochs,1])
# ## 1. Own implementation, class MLP
# In[4]:
# Load data
X, Y, labels, y = load_mnist()
tic = time.time()
# Creating the MLP object initialize the weights
mlp_classifier = mlp.Mlp(size_layers = [784, 100, 10],
act_funct = 'relu',
reg_lambda = 0,
bias_flag = False)
for ix in range(epochs):
mlp_classifier.train(X, Y, 1)
Y_hat = mlp_classifier.predict(X)
# loss
loss[ix] = (0.5)*np.square(Y_hat - Y).mean()
print(str(time.time() - tic) + ' s')
# Ploting loss vs epochs
plt.figure()
ix = np.arange(epochs)
plt.plot(ix, loss)
# Training Accuracy
Y_hat = mlp_classifier.predict(X)
y_tmp = np.argmax(Y_hat, axis=1)
y_hat = labels[y_tmp]
acc = np.mean(1 * (y_hat == y))
print('Training Accuracy: ' + str(acc*100))
# ## 2. numpy implementation
# In this case Backpropagation is hard coded for 3 layers
# In[5]:
# Load data
X, Y, labels, y = load_mnist()
tic = time.time()
# size_layers = [784, 100, 10]
# Randomly initialize weights
w1 = initalize_weights_relu(784, 100)
w2 = initalize_weights_relu(100, 10)
for ix in range(epochs):
n_examples = X.shape[0]
# Forward pass: compute y_hat
a1 = X
z2 = a1.dot(w1)
a2 = np.maximum(z2, 0)
z3 = a2.dot(w2)
a3 = np.maximum(z3, 0)
Y_hat = a3
# Compute loss
loss[ix] = (0.5) * np.square(Y_hat - Y).mean()
# Backprop to compute gradients of w1 and w2 with respect to loss
d3 = Y_hat - Y
grad2 = a2.T.dot(d3) / n_examples
d2_tmp = d3.dot(w2.T)
d2 = d2_tmp.copy()
d2[z2 <= 0] = 0 #d2 = d2 * derivate of ReLU function
grad1 = a1.T.dot(d2) / n_examples
# Update weights
w1 = w1 - grad1
w2 = w2 - grad2
print(str(time.time() - tic) + ' s')
# Ploting loss vs epochs
plt.figure()
ix = np.arange(epochs)
plt.plot(ix, loss)
# Training Accuracy
acc = np.mean(1 * (y_hat == y))
print('Training Accuracy: ' + str(acc*100))
# ## 3. Pytorch tensors
# In[6]:
# Load data
X, Y, labels, y = load_mnist()
tic = time.time()
dtype = torch.FloatTensor
# Convert numpy arrays to Pytorch Tensors
X = torch.from_numpy(X).type(dtype)
Y = torch.from_numpy(Y).type(dtype)
# size_layers = [784, 100, 10]
# Randomly initialize weights
w1 = torch.from_numpy(initalize_weights_relu(784, 100)).type(dtype)
w2 = torch.from_numpy(initalize_weights_relu(100, 10)).type(dtype)
for ix in range(epochs):
n_examples = X.shape[0]
# Forward pass: compute y_hat
a1 = X
z2 = a1.mm(w1)
a2 = z2.clamp(min=0)
z3 = a2.mm(w2)
a3 = z3.clamp(min=0)
Y_hat = a3
# Compute loss
loss[ix] = (0.5) * np.square(Y_hat - Y).mean()
# Backprop to compute gradients of w1 and w2 with respect to loss
d3 = Y_hat - Y
grad2 = a2.t().mm(d3) / n_examples
d2_tmp = d3.mm(w2.t())
d2 = d2_tmp.clone()
d2[z2 <= 0] = 0 #d2 = d2 * derivate of ReLU function
grad1 = a1.t().mm(d2) / n_examples
# Update weights
w1 = w1 - grad1
w2 = w2 - grad2
print(str(time.time() - tic) + ' s')
# Ploting loss vs epochs
plt.figure()
ix = np.arange(epochs)
plt.plot(ix, loss)
# Training Accuracy
acc = np.mean(1 * (y_hat == y))
print('Training Accuracy: ' + str(acc*100))
# ## 4. Pytorch CUDA tensors
# In[7]:
# Load data
X, Y, labels, y = load_mnist()
tic = time.time()
dtype = torch.cuda.FloatTensor
# Convert numpy arrays to Pytorch Tensors
X = torch.from_numpy(X).type(dtype)
Y = torch.from_numpy(Y).type(dtype)
# size_layers = [784, 100, 10]
# Randomly initialize weights
w1 = torch.from_numpy(initalize_weights_relu(784, 100)).type(dtype)
w2 = torch.from_numpy(initalize_weights_relu(100, 10)).type(dtype)
for ix in range(epochs):
n_examples = X.shape[0]
# Forward pass: compute y_hat
a1 = X
z2 = a1.mm(w1)
a2 = z2.clamp(min=0)
z3 = a2.mm(w2)
a3 = z3.clamp(min=0)
Y_hat = a3
y_tmp = torch.max(Y_hat, dim=1)[1]
y_tmp = y_tmp.cpu()
y_hat = labels[y_tmp.numpy()]
# Compute loss
loss[ix] = (0.5) * np.square(y_hat - y).mean()
# Backprop to compute gradients of w1 and w2 with respect to loss
d3 = Y_hat - Y
grad2 = a2.t().mm(d3) / n_examples
d2_tmp = d3.mm(w2.t())
d2 = d2_tmp.clone()
d2[z2 <= 0] = 0 #d2 = d2 * derivate of ReLU function
grad1 = a1.t().mm(d2) / n_examples
# Update weights
w1 = w1 - grad1
w2 = w2 - grad2
print(str(time.time() - tic) + ' s')
# Ploting loss vs epochs
plt.figure()
ix = np.arange(epochs)
plt.plot(ix, loss)
# Training Accuracy
acc = np.mean(1 * (y_hat == y))
print('Training Accuracy: ' + str(acc*100))
# ## Pytorch variables and automatic differentiation (autograd)
# In[8]:
from torch.autograd import Variable
# Load data
X, Y, labels, y = load_mnist()
tic = time.time()
dtype = torch.FloatTensor
# Convert numpy arrays to Pytorch Tensors
# These tensors are wrapped in Variables to produce gradients, however we DO NOT need the gradients to this variables
X = Variable(torch.from_numpy(X).type(dtype), requires_grad = False)
Y = Variable(torch.from_numpy(Y).type(dtype), requires_grad = False)
# size_layers = [784, 100, 10]
# Randomly initialize weights
# These tensors are wrapped in Variables to produce gradients, however we NEED the gradients to this variables
w1 = Variable(torch.from_numpy(initalize_weights_relu(784, 100)).type(dtype), requires_grad = True)
w2 = Variable(torch.from_numpy(initalize_weights_relu(100, 10)).type(dtype), requires_grad = True)
for ix in range(epochs):
n_examples = X.data.shape[0]
# Forward pass: compute Y_hat by doing operations in variables
Y_hat = X.mm(w1).clamp(min=0).mm(w2).clamp(min=0)
# MatMul ReLu MatMul Relu
# Compute loss
loss_var = (0.5) * (Y_hat - Y).pow(2).mean()
loss[ix] = loss_var.item()
# Backward pass
loss_var.backward()
# Gradients
grad1 = w1.grad.data
grad2 = w2.grad.data
# Update weights
w1.data = w1.data - grad1
w2.data = w2.data - grad2
# Reset gradients
w1.grad.data.zero_()
w2.grad.data.zero_()
print(str(time.time() - tic) + ' s')
# Ploting loss vs epochs
plt.figure()
ix = np.arange(epochs)
plt.plot(ix, loss)
# Training Accuracy
y_tmp = torch.max(Y_hat, dim=1)[1]
y_hat = labels[y_tmp.data.numpy()]
acc = np.mean(1 * (y_hat == y))
print('Training Accuracy: ' + str(acc*100))
# ## Pytorch `nn` package
# In[9]:
from torch.autograd import Variable
# Load data
X, Y, labels, y = load_mnist()
tic = time.time()
dtype = torch.FloatTensor
# Convert numpy arrays to Pytorch Tensors
# These tensors are wrapped in Variables to produce gradients, however we DO NOT need the gradients to this variables
X = Variable(torch.from_numpy(X).type(dtype), requires_grad = False)
Y = Variable(torch.from_numpy(Y).type(dtype), requires_grad = False)
model = torch.nn.Sequential(
torch.nn.Linear(784, 100),
torch.nn.ReLU(),
torch.nn.Linear(100, 10),
torch.nn.ReLU(),
)
loss_fn = torch.nn.MSELoss()
for ix in range(epochs):
# Forward pass: compute Y_hat by doing operations in variables
Y_hat = model(X)
# Compute loss
loss_var = 0.5 * loss_fn(Y_hat, Y)
loss[ix] = loss_var.item()
# Reset gradients
model.zero_grad()
# Backward pass
loss_var.backward()
# Update weights
for param in model.parameters():
param.data = param.data - param.grad.data
print(str(time.time() - tic) + ' s')
# Ploting loss vs epochs
plt.figure()
ix = np.arange(epochs)
plt.plot(ix, loss)
# Training Accuracy
Y_hat = model(X)
y_tmp = torch.max(Y_hat, dim=1)[1]
y_hat = labels[y_tmp.data.numpy()]
acc = np.mean(1 * (y_hat == y))
print('Training Accuracy: ' + str(acc*100))
# ## Pytorch `nn` package (in GPU)
# In[10]:
from torch.autograd import Variable
# Load data
X, Y, labels, y = load_mnist()
tic = time.time()
dtype = torch.cuda.FloatTensor
# Convert numpy arrays to Pytorch Tensors
# These tensors are wrapped in Variables to produce gradients, however we DO NOT need the gradients to this variables
X = Variable(torch.from_numpy(X).type(dtype), requires_grad = False)
Y = Variable(torch.from_numpy(Y).type(dtype), requires_grad = False)
model = torch.nn.Sequential(
torch.nn.Linear(784, 100),
torch.nn.ReLU(),
torch.nn.Linear(100, 10),
torch.nn.ReLU(),
)
model.cuda(0)
loss_fn = torch.nn.MSELoss()
for ix in range(epochs):
# Forward pass: compute Y_hat by doing operations in variables
Y_hat = model(X)
# Compute loss
loss_var = 0.5 * loss_fn(Y_hat, Y)
loss[ix] = loss_var.item()
# Reset gradients
model.zero_grad()
# Backward pass
loss_var.backward()
# Update weights
for param in model.parameters():
param.data = param.data - param.grad.data
print(str(time.time() - tic) + ' s')
# Ploting loss vs epochs
plt.figure()
ix = np.arange(epochs)
plt.plot(ix, loss)
# Training Accuracy
Y_hat = model(X)
y_tmp = torch.max(Y_hat, dim=1)[1]
y_hat = labels[y_tmp.data.cpu().numpy()]
acc = np.mean(1 * (y_hat == y))
print('Training Accuracy: ' + str(acc*100))
# In[ ]: