-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathoversterfte_compleet.py
739 lines (606 loc) · 25.4 KB
/
oversterfte_compleet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import pandas as pd
import cbsodata
import streamlit as st
import plotly.graph_objects as go
import numpy as np
from sklearn.linear_model import LinearRegression
import datetime
import statsmodels.api as sm
from oversterfte_plot_functions import plot_wrapper, plot_graph_rivm, show_difference_plot, plot_steigstra_wrapper
from oversterfte_get_data import get_all_data, get_df_offical, get_baseline_kobak
from oversterfte_rivm_functions import verwachte_sterfte_rivm
from oversterfte_cbs_functions import get_sterftedata, get_data_for_series_wrapper, make_df_quantile,make_df_quantile_year,make_row_df_quantile
# Impact of different mortality forecasting methods and explicit assumptions on projected future
# life expectancy
# Stoeldraijer, L.; van Duin, C.; van Wissen, L.J.G.; Janssen, F
# https://pure.rug.nl/ws/portalfiles/portal/13869387/stoeldraijer_et_al_2013_DR.pdf
# 70895ned = https://opendata.cbs.nl/#/CBS/nl/dataset/70895ned/table?ts=1659307527578
# Overledenen; geslacht en leeftijd, per week
# Downloaden van tabeloverzicht
# toc = pd.DataFrame(cbsodata.get_table_list())
try:
st.set_page_config(layout="wide")
except:
pass
# TO SUPRESS
# A value is trying to be set on a copy of a slice from a DataFrame.
# Try using .loc[row_indexer,col_indexer] = value instead
pd.options.mode.chained_assignment = None
def interface():
how = st.sidebar.selectbox(
"How",
[
"quantiles",
"Lines",
"over_onder_sterfte",
"meer_minder_sterfte",
"year_minus_avg",
"p_score",
],
index=0,
)
yaxis_to_zero = st.sidebar.selectbox("Y as beginnen bij 0", [False, True], index=0)
if (
(how == "year_minus_avg")
or (how == "p_score")
or (how == "over_onder_sterfte")
or (how == "meer_minder_sterfte")
):
rightax = st.sidebar.selectbox(
"Right-ax",
["boosters", "herhaalprik", "herfstprik", "rioolwater", "kobak", None],
index=1,
key="aa",
)
mergetype = st.sidebar.selectbox(
"How to merge", ["inner", "outer"], index=0, key="bb"
)
sec_y = st.sidebar.selectbox(
"Secondary Y axis", [True, False], index=0, key="cc"
)
else:
rightax = None
mergetype = None
sec_y = None
return how, yaxis_to_zero, rightax, mergetype, sec_y
def calculate_year_data(df_merged, year, show_official, series_name, smooth):
st.subheader(year)
if year != "All":
df_merged_jaar = df_merged[df_merged["jaar_x_x"] == year].copy()
else:
df_merged_jaar = df_merged.copy()
df_merged_jaar["verw_cbs"] = df_merged_jaar["avg"]
for n in ["cbs", "rivm"]:
df_merged_jaar[f"oversterfte_{n}_simpel"] = (
df_merged_jaar["aantal_overlijdens"] - df_merged_jaar[f"verw_{n}"]
)
df_merged_jaar[f"oversterfte_{n}_simpel_cumm"] = df_merged_jaar[
f"oversterfte_{n}_simpel"
].cumsum()
df_merged_jaar[f"oversterfte_{n}_complex"] = np.where(
df_merged_jaar["aantal_overlijdens"] > df_merged_jaar[f"high_{n}"],
df_merged_jaar["aantal_overlijdens"] - df_merged_jaar[f"high_{n}"],
np.where(
df_merged_jaar["aantal_overlijdens"] < df_merged_jaar[f"low_{n}"],
df_merged_jaar["aantal_overlijdens"] - df_merged_jaar[f"low_{n}"],
0,
),
)
df_merged_jaar[f"oversterfte_{n}_middel"] = np.where(
df_merged_jaar["aantal_overlijdens"] > df_merged_jaar[f"high_{n}"],
df_merged_jaar["aantal_overlijdens"] - df_merged_jaar[f"verw_{n}"],
np.where(
df_merged_jaar["aantal_overlijdens"] < df_merged_jaar[f"low_{n}"],
df_merged_jaar["aantal_overlijdens"] - df_merged_jaar[f"verw_{n}"],
0,
),
)
df_merged_jaar[f"oversterfte_{n}_complex_cumm"] = df_merged_jaar[
f"oversterfte_{n}_complex"
].cumsum()
df_merged_jaar[f"oversterfte_{n}_middel_cumm"] = df_merged_jaar[
f"oversterfte_{n}_middel"
].cumsum()
columnlist = [
"low_cbs",
"verw_cbs",
"high_cbs",
"q05",
"q25",
"verw_cbs",
"q75",
"q95",
]
for what_to_sma in columnlist:
if smooth :
df_merged_jaar = rolling(df_merged_jaar, f"{what_to_sma}")
else:
df_merged_jaar[f'{what_to_sma}_sma'] = df_merged_jaar[what_to_sma]
return df_merged_jaar
def display_cumulative_oversterfte(df_merged_jaar, year):
cbs_middel = df_merged_jaar["oversterfte_cbs_middel_cumm"].iloc[-1]
cbs_simpel = df_merged_jaar["oversterfte_cbs_simpel_cumm"].iloc[-1]
cbs_complex = df_merged_jaar["oversterfte_cbs_complex_cumm"].iloc[-1]
rivm_middel = df_merged_jaar["oversterfte_rivm_middel_cumm"].iloc[-1]
rivm_simpel = df_merged_jaar["oversterfte_rivm_simpel_cumm"].iloc[-1]
rivm_complex = df_merged_jaar["oversterfte_rivm_complex_cumm"].iloc[-1]
try:
simpel_str = f"Simpel: rivm: {int(rivm_simpel)} | cbs: {int(cbs_simpel)} | verschil {int(rivm_simpel-cbs_simpel)}"
middel_str = f"Middel: rivm: {int(rivm_middel)} | cbs: {int(cbs_middel)} | verschil {int(rivm_middel-cbs_middel)}"
complex_str = f"Complex: rivm: {int(rivm_complex)} | cbs: {int(cbs_complex)} | verschil {int(rivm_complex-cbs_complex)}"
texts = [simpel_str, middel_str, complex_str]
except:
texts = [None, None, None]
temp1 = [None, None, None]
col1, col2, col3 = st.columns(3)
temp1[0], temp1[1], temp1[2] = col1, col2, col3
for i, p in enumerate(["simpel", "middel", "complex"]):
with temp1[i]:
fig = go.Figure()
for n in ["rivm", "cbs"]:
fig.add_trace(
go.Scatter(
x=df_merged_jaar["periodenr"],
y=df_merged_jaar[f"oversterfte_{n}_{p}_cumm"],
mode="lines",
name=f"cummulatieve oversterfte {n}",
)
)
fig.update_layout(
title=f"Cumm oversterfte ({p}) - {year}",
xaxis_title="Tijd",
yaxis_title="Aantal",
)
st.plotly_chart(fig)
st.write(texts[i])
def display_results(df_merged_jaar, year):
st.subheader(f"Results - {year}")
df_grouped = df_merged_jaar.groupby(by="jaar_x_x").sum().reset_index()
df_grouped = df_grouped[
[
"jaar_x_x",
"oversterfte_rivm_simpel",
"oversterfte_rivm_middel",
"oversterfte_rivm_complex",
"oversterfte_cbs_simpel",
"oversterfte_cbs_middel",
"oversterfte_cbs_complex",
]
]
for x in ["simpel", "middel", "complex"]:
df_grouped[f"verschil_{x}"] = (
df_grouped[f"oversterfte_rivm_{x}"] - df_grouped[f"oversterfte_cbs_{x}"]
)
_df_grouped_transposed = df_grouped.transpose().astype(int)
if year == "All":
st.write(_df_grouped_transposed)
else:
new_data = {
"rivm": {
"simpel": df_grouped["oversterfte_rivm_simpel"].iloc[0],
"middel": df_grouped["oversterfte_rivm_middel"].iloc[0],
"complex": df_grouped["oversterfte_rivm_complex"].iloc[0],
},
"cbs": {
"simpel": df_grouped["oversterfte_cbs_simpel"].iloc[0],
"middel": df_grouped["oversterfte_cbs_middel"].iloc[0],
"complex": df_grouped["oversterfte_cbs_complex"].iloc[0],
},
"verschil": {
"simpel": df_grouped["verschil_simpel"].iloc[0],
"middel": df_grouped["verschil_middel"].iloc[0],
"complex": df_grouped["verschil_complex"].iloc[0],
},
}
new_df_grouped = pd.DataFrame(new_data).transpose().astype(int)
st.write(new_df_grouped)
def make_df_merged(df_data, df_rivm, series_name, period):
_, df_corona, df_quantile = make_df_quantile(series_name, df_data, period)
df_official = get_df_offical()
df_merged = df_corona.merge(df_quantile, left_on="periodenr", right_on="periodenr").merge(
df_rivm, on="periodenr", how="outer"
)
df_merged = df_merged.merge(
df_official, left_on="periodenr", right_on="periodenr_z", how="outer"
)
#df_merged = df_merged.drop(columns=["week"])
df_merged["shifted_jaar"] = df_merged["jaar_x_x"] # .shift(28)
df_merged["shifted_week"] = df_merged["week_x_x"] # .shift(28)
columns = [
[series_name, "aantal_overlijdens"],
["q50", "verw_cbs_q50"],
["low05", "low_cbs"],
["avg_", "avg_x"],
["high95", "high_cbs"],
["voorspeld", "verw_rivm"],
["lower_ci", "low_rivm"],
["upper_ci", "high_rivm"],
]
# ["avg_", "verw_cbs"],
for c in columns:
df_merged = df_merged.rename(columns={c[0]: c[1]})
return df_merged
def calculate_steigstra(df_merged, series_naam, cumm=False, m="cbs"):
# Set 'week' to 52 if 'periodenr' is '2022_52'
# Get list of current columns excluding "shifted_jaar"
other_columns = [col for col in df_merged.columns if col != "shifted_jaar"]
# Reorder columns to put "shifted_jaar" at the beginning
new_columns = ["shifted_jaar"] + other_columns
# Reindex DataFrame with new column order
df_merged = df_merged.reindex(columns=new_columns)
df_merged["verw_cbs"] = df_merged["avg"]
df_compleet = pd.DataFrame()
for year in range(2015, 2025):
df_merged_jaar = df_merged[df_merged["jaar_x_x"] == year].copy()
for n in ["cbs"]:
df_merged_jaar[f"oversterfte_{n}_simpel"] = (
df_merged_jaar["aantal_overlijdens"] - df_merged_jaar[f"verw_{n}"]
)
df_merged_jaar[f"oversterfte_{n}_simpel_cumm"] = df_merged_jaar[
f"oversterfte_{n}_simpel"
].cumsum()
df_compleet = pd.concat([df_compleet, df_merged_jaar])
df_compleet["shifted_jaar"] = df_compleet["jaar_x_x"] # .shift(24)
if cumm:
df = df_compleet.pivot(
index=["week_x_x"],
columns="shifted_jaar",
values=f"oversterfte_{m}_simpel_cumm",
).reset_index()
else:
df = df_compleet.pivot(
index=["week_x_x"], columns="shifted_jaar", values=f"oversterfte_{m}_simpel"
).reset_index()
# Calculate average and standard deviation
df["average"] = df.mean(axis=1)
# Calculate low and high (mean - 1.96*std and mean + 1.96*std)
df["low"] = df["average"] - 1.96 * df.std(axis=1)
df["high"] = df["average"] + 1.96 * df.std(axis=1)
return df
def comparison(df_merged, series_name, smooth):
show_official = st.sidebar.selectbox("Show official values", [True, False], 0)
st.subheader("Vergelijking")
for year in ["All", 2020, 2021, 2022, 2023, 2024]:
expanded = True if year == "All" else False
with st.expander(f"{year}", expanded=expanded):
df_merged_jaar = calculate_year_data(
df_merged, year, show_official, series_name, smooth
)
show_difference_wrapper(df_merged_jaar, "periodenr", show_official, year)
display_cumulative_oversterfte(df_merged_jaar, year)
display_results(df_merged_jaar, year)
def filter_period(df_new, start_year, start_week, end_year, end_week, add):
"""Filter de dataframe en dus de grafiek in tijd (x-as)"""
condition1 = (df_new[f"jaar{add}"] == start_year) & (
df_new[f"week{add}"] >= start_week
)
condition2 = (df_new[f"jaar{add}"] >= start_year) & (
df_new[f"jaar{add}"] <= end_year
)
condition3 = (df_new[f"jaar{add}"] == end_year) & (df_new[f"week{add}"] <= end_week)
# Rijen selecteren die aan een van deze voorwaarden voldoen
df_new = df_new[condition1 | condition2 | condition3]
return df_new
def rolling(df, what):
df[f"{what}_sma"] = df[what].rolling(window=7, center=True).mean()
# df[what] = df[what].rolling(window=6, center=False).mean()
# df[f'{what}_sma'] = savgol_filter(df[what], 7,2)
return df
def show_difference_wrapper(df, date_field, show_official, year):
"""Function to show the difference between the two methods quickly"""
df_baseline_kobak = get_baseline_kobak()
df = pd.merge(df, df_baseline_kobak, on="periodenr", how="outer")
if year!= "All":
df= df[df["jaar_x_x"] == year]
# rolling(df, 'baseline_kobak')
show_difference_plot(df, date_field, show_official, year)
def duplicate_row(df, from_, to):
"""Duplicates a row
Args:
df (df): df
from_ (str): oorspronkelijke rij eg. '2022_51'
to (str): bestemmingsrij eg. '2022_52'
"""
# Find the row where periodenr is '2022_51' and duplicate it
row_to_duplicate = df[df["periodenr"] == from_].copy()
# Update the periodenr value to '2022_52' in the duplicated row
row_to_duplicate["periodenr"] = to
row_to_duplicate["week"] = int(to.split("_")[1])
# Append the duplicated row to the DataFrame
df = pd.concat([df, row_to_duplicate], ignore_index=True)
df = df.sort_values(by=["periodenr"]).reset_index(drop=True)
return df
def footer():
st.write(
"De correctiefactor voor 2020, 2021 en 2022 is berekend over de gehele populatie."
)
st.write(
"Het 95%-interval is berekend aan de hand van het gemiddelde en standaarddeviatie (z=2) over de waardes per week van 2015 t/m 2019"
)
# st.write("Week 53 van 2020 heeft een verwachte waarde en 95% interval van week 52")
st.write(
"Enkele andere gedeeltelijke weken zijn samengevoegd conform het CBS bestand"
)
st.write("Code: https://github.com/rcsmit/COVIDcases/blob/main/oversterfte.py")
st.write("P score = (verschil - gemiddelde) / gemiddelde, gesmooth over 6 weken")
st.info("Karlinsky & Kobak: https://elifesciences.org/articles/69336#s4")
st.info("Steigstra: https://twitter.com/SteigstraHerman/status/1801641074336706839")
def predict(X, verbose=False, excess_begin=None):
"""Function to predict the baseline with linear regression - Karlinksy & Kobak
Source: https://github.com/dkobak/excess-mortality/blob/main/all-countries.ipynb
Args:
X (_type_): _description_
verbose (bool, optional): _description_. Defaults to False.
excess_begin (_type_, optional): _description_. Defaults to None.
Returns:
_type_: _description_
"""
def get_excess_begin(datapoints_per_year=53):
if datapoints_per_year > 12:
beg = 9 # week 10
elif datapoints_per_year > 4 and datapoints_per_year <= 12:
beg = 2 # March
elif datapoints_per_year == 4:
beg = 0
return beg
# Fit regression model on pre-2020 data
ind = (X[:, 0] < 2020) & (X[:, 1] < 53)
m = np.max(X[ind, 1])
onehot = np.zeros((np.sum(ind), m))
for i, k in enumerate(X[ind, 1]):
onehot[i, k - 1] = 1
predictors = np.concatenate((X[ind, :1], onehot), axis=1)
reg = LinearRegression(fit_intercept=False).fit(predictors, X[ind, 2])
if verbose:
est = sm.OLS(X[ind, 2], predictors).fit()
print(est.summary())
# Compute 2020 baseline
ind2 = X[:, 0] == 2020
predictors2020 = np.concatenate((np.ones((m, 1)) * 2020, np.eye(m)), axis=1)
baseline = reg.predict(predictors2020)
# Week 53 usually does not have enough data, so we'll use
# the same baseline value as for week 52
if np.max(X[:, 1]) == 53:
baseline = np.concatenate((baseline, [baseline[-1]]))
# Compute 2021 baseline
predictors2021 = np.concatenate((np.ones((m, 1)) * 2021, np.eye(m)), axis=1)
baseline2021 = reg.predict(predictors2021)
# Compute 2022 baseline
predictors2022 = np.concatenate((np.ones((m, 1)) * 2022, np.eye(m)), axis=1)
baseline2022 = reg.predict(predictors2022)
# Compute 2023 baseline
predictors2023 = np.concatenate((np.ones((m, 1)) * 2023, np.eye(m)), axis=1)
baseline2023 = reg.predict(predictors2023)
# Excess mortality
ind2 = X[:, 0] == 2020
diff2020 = X[ind2, 2] - baseline[X[ind2, 1] - 1]
ind3 = X[:, 0] == 2021
diff2021 = X[ind3, 2] - baseline2021[X[ind3, 1] - 1]
ind4 = X[:, 0] == 2022
diff2022 = X[ind4, 2] - baseline2022[X[ind4, 1] - 1]
ind5 = X[:, 0] == 2023
diff2023 = X[ind5, 2] - baseline2023[X[ind5, 1] - 1]
if excess_begin is None:
excess_begin = get_excess_begin(baseline.size)
total_excess = (
np.sum(diff2020[excess_begin:])
+ np.sum(diff2021)
+ np.sum(diff2022)
+ np.sum(diff2023)
)
# Manual fit for uncertainty computation
if np.unique(X[ind, 0]).size > 1:
y = X[ind, 2][:, np.newaxis]
beta = np.linalg.pinv(predictors.T @ predictors) @ predictors.T @ y
yhat = predictors @ beta
sigma2 = np.sum((y - yhat) ** 2) / (y.size - predictors.shape[1])
S = np.linalg.pinv(predictors.T @ predictors)
w = np.zeros((m, 1))
w[X[(X[:, 0] == 2020) & (X[:, 1] < 53), 1] - 1] = 1
if np.sum((X[:, 0] == 2020) & (X[:, 1] == 53)) > 0:
w[52 - 1] += 1
w[:excess_begin] = 0
p = 0
for i, ww in enumerate(w):
p += predictors2020[i] * ww
w2021 = np.zeros((m, 1))
w2021[X[ind3, 1] - 1] = 1
for i, ww in enumerate(w2021):
p += predictors2021[i] * ww
w2022 = np.zeros((m, 1))
w2022[X[ind4, 1] - 1] = 1
for i, ww in enumerate(w2022):
p += predictors2022[i] * ww
w2023 = np.zeros((m, 1))
w2023[X[ind5, 1] - 1] = 1
for i, ww in enumerate(w2023):
p += predictors2023[i] * ww
p = p[:, np.newaxis]
predictive_var = (
sigma2 * (np.sum(w) + np.sum(w2021) + np.sum(w2022) + np.sum(w2023))
+ sigma2 * p.T @ S @ p
)
total_excess_std = np.sqrt(predictive_var)[0][0]
else:
total_excess_std = np.nan
return (
(baseline, baseline2021, baseline2022, baseline2023),
total_excess,
excess_begin,
total_excess_std,
)
def show_plot(df, df_covid, df_kobak_github):
"""_summary_
Args:
df (df): df with the calculated values of the Kobak baseline
df_covid (df): df with the calcualted values with the CBS method
df_kobak_github (df): df with the values of the Kobak baseline from their Github repo
"""
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=df["periodenr"], y=df["baseline_kobak"], mode="lines", name=f"kobak_baseline"
)
)
fig.add_trace(
go.Scatter(
x=df["periodenr"],
y=df_kobak_github["baseline_kobak"],
mode="lines",
name=f"kobak_baseline GITHUB",
)
)
fig.add_trace(
go.Scatter(
x=df["periodenr"],
y=df_covid["avg_"],
mode="lines",
name=f"CBS_method_baseline",
)
)
fig.update_layout(title=f"Koak vs CBS", xaxis_title="Tijd", yaxis_title="Aantal")
st.plotly_chart(fig)
def do_kobak_vs_cbs(df_deaths):
"""Main function
Calculate the baseline with the function of Karlinksy & Kobak
(and compare with CBS and their own results)
Results :
df_kobak_calculated (df): df with the calculated values of the Kobak baseline
df_covid (df): df with the calcualted values with the CBS method
df_kobak_github (df): df with the values of the Kobak baseline from their Github repo
"""
st.subheader("Kobak vs CBS")
# df_deaths = get_sterftedata()
df, _, _ = make_df_quantile("m_v_0_999", df_deaths, "week")
df_covid = df[(df["jaar_x"] >= 2020) & (df["jaar_x"] <= 2023)]
X = df[["jaar_x", "week_x", "m_v_0_999"]].values
X = X[~np.isnan(X[:, 2]), :]
X = X.astype(int)
baselines, total_excess, excess_begin, total_excess_std = predict(X)
list1 = baselines[0].tolist()
list2 = baselines[1].tolist()
list3 = baselines[2].tolist()
list4 = baselines[3].tolist()
# Combine the lists
combined_list = list1 + list2 + list3 + list4
# Generate a date range from the start of 2020 to the end of 2023
date_range = pd.date_range(start="2020-01-01", end="2023-12-31", freq="W-MON")
# Extract year and week number
df_kobak_calculated = pd.DataFrame(
{"year": date_range.year, "week": date_range.isocalendar().week}
)
df_kobak_calculated["baseline_kobak"] = combined_list
df_kobak_calculated["periodenr"] = (
df_kobak_calculated["year"].astype(str)
+ "_"
+ df_kobak_calculated["week"].astype(str).str.zfill(2)
)
df_kobak_github = get_baseline_kobak()
show_plot(df_kobak_calculated, df_covid, df_kobak_github)
def main():
serienames_ = [
"m_v_0_999",
"m_v_0_64",
"m_v_65_79",
"m_v_80_999",
"m_0_999",
"m_0_64",
"m_65_79",
"m_80_999",
"v_0_999",
"v_0_64",
"v_65_79",
"v_80_999",
]
series_name = st.sidebar.selectbox("Leeftijden", serienames_, 0)
smooth = st.sidebar.selectbox("Smooth div lijnen in de vergelijking", [True,False],0)
vanaf_jaar = st.sidebar.number_input ("Beginjaar voor CI-interv. (incl.)", 2000, 2022,2015)
period = "week" # st.sidebar.selectbox("Period", ["week", "maand"], index = 0)
st.header("Oversterfte - minder leeftijdscategorieen - v240829a")
st.subheader("CBS & RIVM Methode")
st.write(
"""Berekening van de oversterfte met de CBS en RIVM methode. Tevens wordt een vergelijking gemaakt met de methode van Kobak en de methode Steigstra wordt gerepliceerd. Dit script heeft minder leeftijdscategorieen in vergelijking met Eurostats, maar de sterftedata wordt real-time opgehaald van het CBS.
Daarnaast wordt het 95% betrouwbaarheids interval berekend vanuit de jaren 2015-2019"""
)
st.info("https://rene-smit.com/de-grote-oversterftekloof-rivm-vs-cbs/")
how, yaxis_to_zero, rightax, mergetype, sec_y = interface()
(
df_boosters,
df_herhaalprik,
df_herfstprik,
df_rioolwater,
df_kobak, cbs_data_ruw
) = get_all_data(series_name, vanaf_jaar)
df_sterfte = get_sterftedata(cbs_data_ruw, vanaf_jaar, series_name)
df_corona, df_quantile, df_rivm, df_merged = calculate_dataframes(series_name, vanaf_jaar, period, how, df_sterfte)
plot_wrapper(
df_boosters,
df_herhaalprik,
df_herfstprik,
df_rioolwater,
df_sterfte,
df_corona,
df_quantile,
df_kobak,
series_name,
how,
yaxis_to_zero,
rightax,
mergetype,
sec_y,
)
if how == "quantiles":
if series_name == "m_v_0_999":
plot_graph_rivm(df_rivm, series_name, False)
comparison(df_merged, series_name, smooth)
do_kobak_vs_cbs(df_sterfte)
df_steigstra = calculate_steigstra(df_merged, series_name)
plot_steigstra_wrapper(df_steigstra, series_name)
else:
st.info(
"De vergrlijking met vaccinateies, rioolwater etc is vooralsnog alleen mogelijk met CBS methode "
)
footer()
def calculate_dataframes(series_name, vanaf_jaar, period, how, df_sterfte):
"""
Calculate various dataframes related to mortality data.
This function processes mortality data to generate several dataframes, including
quantile data, expected mortality, and merged dataframes based on the specified method.
Parameters:
series_name (str): The name of the series to process.
vanaf_jaar (int): The starting year for the data.
period (str): The period for which the data is processed.
how (str): The method to use for processing ('quantiles' or other).
df_sterfte (pd.DataFrame): The dataframe containing mortality data.
Returns:
tuple: A tuple containing the following dataframes:
- df_corona (pd.DataFrame): Dataframe with corona-related data.
- df_quantile (pd.DataFrame): Dataframe with quantile data.
- df_rivm (pd.DataFrame): Dataframe with expected mortality data from RIVM.
- df_merged (pd.DataFrame): Merged dataframe based on the specified method.
"""
print(f"---{series_name}----")
df_data = get_data_for_series_wrapper(df_sterfte, series_name, vanaf_jaar).copy(deep=True)
_, df_corona, df_quantile = make_df_quantile(series_name, df_data, period)
df_rivm = verwachte_sterfte_rivm(df_sterfte, series_name)
if how == "quantiles":
df_merged = make_df_merged(df_data, df_rivm, series_name, period)
if 1==2: #if you want an export
df_merged = df_merged.assign(
jaar_week=df_merged["periodenr"],
basevalue=df_merged["avg"],
OBS_VALUE_=df_merged["aantal_overlijdens"]
)
df_to_export = df_merged[["jaar_week","basevalue","OBS_VALUE_"]]
df_to_export["age_sex"]= "Y0-120_T"
try:
df_to_export.to_csv(f"C:\\Users\\rcxsm\\Documents\\python_scripts\\covid19_seir_models\\COVIDcases\\input\\basevalues_sterfte_Y0-120_T.csv")
except:
pass
return df_corona,df_quantile,df_rivm,df_merged
if __name__ == "__main__":
import datetime
print(
f"-----------------------------------{datetime.datetime.now()}-----------------------------------------------------"
)
main()