-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhfit.py
1012 lines (788 loc) · 43.8 KB
/
hfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Import libraries
from math import cos,sin,tan,asin,acos,radians,sqrt,degrees,atan
import numpy as np
import matplotlib.pyplot as plt
from lmfit import Parameters,minimize,report_fit # fot fitting helix
#import io # for printing output to file
#from contextlib import redirect_stdout # for printing output to file
import tempfile
import os
import pyrosetta
#from rosetta import *
pyrosetta.init("-beta_nov16 -mute all")
import pandas as pd
import copy
import warnings
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
# Calculates Rotation Matrix given euler angles and back.
#https://www.learnopencv.com/rotation-matrix-to-euler-angles/
def euler_to_R(phi,theta,psi):
R_x = np.array([[1, 0, 0 ],
[0, np.cos(phi), -np.sin(phi) ],
[0, np.sin(phi), np.cos(phi) ]
])
R_y = np.array([[np.cos(theta), 0, np.sin(theta) ],
[0, 1, 0 ],
[-np.sin(theta), 0, np.cos(theta) ]
])
R_z = np.array([[np.cos(psi), -np.sin(psi), 0],
[np.sin(psi), np.cos(psi), 0],
[0, 0, 1]
])
R = np.dot(R_z, np.dot( R_y, R_x ))
return R
def isRotationMatrix(R) :
Rt = np.transpose(R)
shouldBeIdentity = np.dot(Rt, R)
I = np.identity(3, dtype = R.dtype)
n = np.linalg.norm(I - shouldBeIdentity)
return n < 1e-6
def R_to_euler(R) :
assert(isRotationMatrix(R))
s_y = np.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
singular = s_y < 1e-6
if not singular :
phi = np.arctan2(R[2,1] , R[2,2])
theta = np.arctan2(-R[2,0], s_y)
psi = np.arctan2(R[1,0], R[0,0])
else :
phi = np.arctan2(-R[1,2], R[1,1])
theta = np.arctan2(-R[2,0], s_y)
psi = 0
return np.array([phi, theta, psi])
def rotation(u,v):
#a = np.array([0,0,1])
#b = random_tilt_u(sigma)
a = normalize(u)
b = normalize(v)
v = np.cross(a,b)
s = np.linalg.norm(v) #?
c = a.dot(b)
I = np.identity(3)
#vXStr = '{} {} {}; {} {} {}; {} {} {}'.format(0, -v[2], v[1], v[2], 0, -v[0], -v[1], v[0], 0)
#k = np.matrix(vXStr)
k = np.array([[0 , -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]])
R = I + k + np.matmul(k,k) * ((1 -c)/(s**2))
assert(isRotationMatrix(R))
return R
u = [0,0,1]
v = normalize([1,1,1])
R1 = rotation(u,v)
#print(R1)
#print(R1.dot(u),v)
class HelixParameters():
def __init__(self,r0=None,omega0=None,omega1=None,phi0=None,phi1=None,delta_z=None,invert=None,helix_length=None,z_aligned=False,translate_x=None,translate_y=None,translate_z=None,rotate_phi=None,rotate_theta=None,rotate_psi=None):
self._r0,self._omega0,self._omega1,self._phi0,self._phi1,self._delta_z,self._invert,self._length,self._d,self._r1 = (None,)*10
self._translate_x, self._translate_y, self._translate_z, self._rotate_phi, self._rotate_theta,self._rotate_psi = (None,)*6
self.r0(r0)
self.omega0(omega0)
self.omega1(omega1)
self.phi0(phi0)
self.phi1(phi1)
self.delta_z(delta_z)
self.invert(invert)
self.length(helix_length)
self._d = 1.51 # FIXED, distance between successive residues along the helical axis, [angstrom] -- BundleGridSampler=z1
self._r1 = 2.26 # FIXED, helical radius, [angstrom] -- BundleGridSampler=r1_peratom
self.z_aligned = z_aligned
if self.z_aligned and any([translate_x,translate_y,translate_z,rotate_phi,rotate_theta,rotate_psi]):
raise ValueError("no transformation parameters are allowed in z_aligned mode")
if not self.z_aligned:
self.translate_x(translate_x)
self.translate_y(translate_y)
self.translate_z(translate_z)
self.rotate_phi(rotate_phi)
self.rotate_theta(rotate_theta)
self.rotate_psi(rotate_psi)
def __repr__(self):
return f'Helical Parameters: r0={self.r0()},omega0={self.omega0()},omega1={self.omega1()},phi0={self.phi0()},' \
f'phi1={self.phi1()},delta_z={self.delta_z()},d={self.d()},r1={self.r1()},' \
f'translate_x={self.translate_x()},translate_y={self.translate_y()},translate_z={self.translate_z()},' \
f'rotate_phi={self.rotate_phi()},rotate_theta={self.rotate_theta()},rotate_psi={self.rotate_psi()},' \
f'invert={self.invert()},length={self.length()}'
#hybrid setters/getters. They will always return the value you ask for, but if you pass
#something to the function, it'll update the stored value and then return the (updated) value
def r0(self,r0:float=None):
if r0 is not None:
assert(r0 >0)
#assert(r0 <= 20)
self._r0 = r0
return self._r0
def omega0(self,omega0:float=None):
if omega0 is not None:
self._omega0 = omega0
return self._omega0
def omega1(self,omega1:float=None):
if omega1 is not None:
self._omega1 = omega1
return self._omega1
def phi0(self,phi0:float=None):
if phi0 is not None:
assert(phi0 >= 0) #enforece pos only
self._phi0 = phi0
return self._phi0
def phi1(self,phi1:float=None):
if phi1 is not None:
self._phi1 = phi1
return self._phi1
def delta_z(self,delta_z:float=None):
if delta_z is not None:
self._delta_z = delta_z
return self._delta_z
def invert(self,invert:bool=None):
if invert is not None:
self._invert = invert
return self._invert
def length(self,length:int=None):
if length is not None:
self._length = length
return self._length
def d(self,d:float=None):
if d is not None:
warnings.warn("HelixParamaters variable d is a physical constraint and should not be touched")
self._d = d
return self._d
def r1(self,r1:float=None):
if r1 is not None:
warnings.warn("HelixParamaters variable r1 is a physical constraint and should not be touched")
self._r1 = r1
return self._r1
#new axis independent code
def translate_x(self,x:float=None):
if x is not None:
self._translate_x = x
#print(f"self._translate_x: {self._translate_x}")
return self._translate_x
def translate_y(self,y:float=None):
if y is not None:
self._translate_y = y
#print(f"self._translate_y: {self._translate_y}")
return self._translate_y
def translate_z(self,z:float=None):
if z is not None:
self._translate_z = z
#print(f"self._translate_z: {self._translate_z}")
return self._translate_z
def rotate_phi(self,phi:float=None):
if phi is not None:
self._rotate_phi = phi
#print(f"self._rotate_phi: {self._rotate_phi}")
return self._rotate_phi
def rotate_theta(self,theta:float=None):
if theta is not None:
self._rotate_theta = theta
#print(f"self._rotate_theta: {self._rotate_theta}")
return self._rotate_theta
def rotate_psi(self,psi:float=None):
if psi is not None:
self._rotate_psi = psi
#print(f"self._rotate_psi: {self._rotate_psi}")
return self._rotate_psi
def transformation_matrix(self):
if self.z_aligned:
return np.identity(4)
R = euler_to_R(self.rotate_phi(),self.rotate_theta(),self.rotate_psi())
#print(R)
#R.resize(4,4)
M = np.append(np.append(R,[[0]*3],axis=0),[[0]]*4,axis=1)
#print(M)
M[3][3] = 1
M[0][3] = self.translate_x()
M[1][3] = self.translate_y()
M[2][3] = self.translate_z()
#print(M)
return M
def to_lmfit_parameters(self, round_num=None):
if self.z_aligned and round_num is not None:
raise ValueError("z aligned mode only has one round. Just don't set round_num")
if self.z_aligned:
params = Parameters()
params.add('r0', value=self.r0(), min=0.000001, max=40, vary=True) # avoid negative radii
params.add('omega0', value=self.omega0(), vary=True)
params.add('omega1', value=self.omega1(), vary=True)
params.add('phi0', value=self.phi0(), min=0,vary=True) # enforce positive values only
params.add('phi1', value=self.phi1(),vary=True)
params.add('delta_z', value=self.delta_z(), vary=True)
params.add('invert', value=self.invert(), vary=False)
return params
if round_num is None:
params = Parameters()
params.add('r0', value=self.r0(), min=0.0000000001, max=20, vary=True) # avoid zero
params.add('omega0', value=self.omega0(),min=radians(-10),max=radians(10), vary=True)
#params.add('d', value=self.d(),vary=False)
#params.add('omega0', value=self.omega0(), expr='r0/d')
#print("I attempted to tie these values together but I'm not sure it worked")
params.add('omega1', value=self.omega1(),min=radians(80),max=radians(120), vary=True) #TODO:use a function constraint to tie omega0 and omega1 together
params.add('omega1_omega0_coupling', value=0,min=radians(-10),max=radians(10),expr="abs(omega0+omega1)-radians(100)")
params.add('phi0', value=self.phi0(), min=0,vary=False) # enforce positive values only
params.add('phi1', value=self.phi1(),vary=True)
params.add('delta_z', value=self.delta_z(), vary=False) #taken care of by axis_independent code?
params.add('invert', value=self.invert(), vary=False)
#r0*omega0 = d * sin(alpha)
return params
elif round_num == 1:
params = Parameters()
params.add('r0', value=self.r0(), min=5, max=20, vary=False) # avoid zero
params.add('omega0', value=self.omega0(),min=radians(-10),max=radians(10), vary=False)
#params.add('d', value=self.d(),vary=False)
#params.add('omega0', value=self.omega0(), expr='r0/d')
#print("I attempted to tie these values together but I'm not sure it worked")
params.add('omega1', value=self.omega1(),min=radians(80),max=radians(120), vary=False) #TODO:use a function constraint to tie omega0 and omega1 together
params.add('omega1_omega0_coupling', value=0,min=radians(-10),max=radians(10),expr="abs(omega0+omega1)-radians(100)",vary=False)
params.add('phi0', value=self.phi0(), min=0,vary=False) # enforce positive values only
params.add('phi1', value=self.phi1(),vary=True)
params.add('delta_z', value=self.delta_z(), vary=False) #taken care of by axis_independent code?
params.add('invert', value=self.invert(), vary=False)
#axis independent code:
params.add('translate_x', value=self.translate_x(),vary=True)
params.add('translate_y', value=self.translate_y(),vary=True)
params.add('translate_z', value=self.translate_z(),vary=True)
params.add('rotate_phi', value=self.rotate_phi(),min=-np.pi,max=np.pi,vary=True)
params.add('rotate_theta', value=self.rotate_theta(),min=-np.pi,max=np.pi,vary=True)
params.add('rotate_psi',value=self.rotate_psi(),min=-np.pi,max=np.pi,vary=True)
return params
elif round_num == 2:
params = Parameters()
params.add('r0', value=self.r0(), min=5, max=20, vary=True) # avoid zero
params.add('omega0', value=self.omega0(),min=radians(-10),max=radians(10), vary=True)
#params.add('d', value=self.d(),vary=False)
#params.add('omega0', value=self.omega0(), expr='r0/d')
#print("I attempted to tie these values together but I'm not sure it worked")
params.add('omega1', value=self.omega1(),min=radians(80),max=radians(120), vary=True) #TODO:use a function constraint to tie omega0 and omega1 together
params.add('omega1_omega0_coupling', value=0,min=radians(-10),max=radians(10),expr="abs(omega0+omega1)-radians(100)",vary=True)
params.add('phi0', value=self.phi0(), min=0,vary=True) # enforce positive values only
params.add('phi1', value=self.phi1(),vary=True)
params.add('delta_z', value=self.delta_z(), vary=False) #taken care of by axis_independent code?
params.add('invert', value=self.invert(), vary=False)
#axis independent code:
params.add('translate_x', value=self.translate_x(),vary=False)
params.add('translate_y', value=self.translate_y(),vary=False)
params.add('translate_z', value=self.translate_z(),vary=False)
params.add('rotate_phi', value=self.rotate_phi(),min=-np.pi,max=np.pi,vary=False)
params.add('rotate_theta', value=self.rotate_theta(),min=-np.pi,max=np.pi,vary=False)
params.add('rotate_psi',value=self.rotate_psi(),min=-np.pi,max=np.pi,vary=False)
return params
elif round_num == 3:
params = Parameters()
params.add('r0', value=self.r0(), min=5, max=20, vary=True) # avoid zero
params.add('omega0', value=self.omega0(),min=radians(-10),max=radians(10), vary=True)
#params.add('d', value=self.d(),vary=False)
#params.add('omega0', value=self.omega0(), expr='r0/d')
#print("I attempted to tie these values together but I'm not sure it worked")
params.add('omega1', value=self.omega1(),min=radians(80),max=radians(120), vary=True) #TODO:use a function constraint to tie omega0 and omega1 together
params.add('omega1_omega0_coupling', value=0,min=radians(-10),max=radians(10),expr="abs(omega0+omega1)-radians(100)")
params.add('phi0', value=self.phi0(), min=0,vary=False) # enforce positive values only
params.add('phi1', value=self.phi1(),vary=True)
params.add('delta_z', value=self.delta_z(), vary=False) #taken care of by axis_independent code?
params.add('invert', value=self.invert(), vary=False)
#r0*omega0 = d * sin(alpha)
#axis independent code:
params.add('translate_x', value=self.translate_x(),vary=True)
params.add('translate_y', value=self.translate_y(),vary=True)
params.add('translate_z', value=self.translate_z(),vary=True)
params.add('rotate_phi', value=self.rotate_phi(),min=-np.pi,max=np.pi,vary=True)
params.add('rotate_theta', value=self.rotate_theta(),min=-np.pi,max=np.pi,vary=True)
params.add('rotate_psi',value=self.rotate_psi(),min=-np.pi,max=np.pi,vary=True)
return params
else:
print(f"round_num {round_num} not recognized")
return None
def from_lmfit(self, fit):
self.r0(fit.valuesdict()['r0'])
self.omega0(fit.valuesdict()['omega0'])
self.omega1(fit.valuesdict()['omega1'])
self.phi0(fit.valuesdict()['phi0'])
self.phi1(fit.valuesdict()['phi1'])
self.delta_z(fit.valuesdict()['delta_z'])
self.invert(fit.valuesdict()['invert'])
if not self.z_aligned:
self.translate_x(fit.valuesdict()['translate_x'])
self.translate_y(fit.valuesdict()['translate_y'])
self.translate_z(fit.valuesdict()['translate_z'])
self.rotate_phi(fit.valuesdict()['rotate_phi'])
self.rotate_theta(fit.valuesdict()['rotate_theta'])
self.rotate_psi(fit.valuesdict()['rotate_psi'])
def get_dict(self):
d = {
'r0':self.r0(),
'omega0':self.omega0(),
'omega1':self.omega1(),
'phi0':self.phi0(),
'phi1':self.phi1(),
'delta_z':self.delta_z(),
'd':self.d(),
'r1':self.r1(),
'translate_x':self.translate_x(),
'translate_y':self.translate_y(),
'translate_z':self.translate_z(),
'rotate_phi':self.rotate_phi(),
'rotate_theta':self.rotate_theta(),
'rotate_psi':self.rotate_psi(),
'invert':self.invert(),
'length':self.length()
}
return d
class ParametricFit():
def __init__(self, name, fit=None, write_axis=False):
self._name = None
self.write_axis = write_axis
if self.write_axis:
self.axis_movie = []
self.fit = pd.DataFrame()
self.coordinate_movie = []
self.rmsd = []
self.parameter_history=[]
if name is None:
name = "parametric_fit"
self.name(name)
if fit is not None:
self.parse_fit(fit)
#this really should only be accessed by the ParametricHelix class
#take a fit and
def parse_fit(self, fit):
self.fit = fit
warnings.warn("PARSE_FIT NOT IMPLEMENTED")
def name(self,name:str=None):
if name is not None:
self._name = name
return self._name
def append_trajectory_rmsd(self,rmsd):
self.rmsd.append(rmsd)
def append_trajectory_coords(self,coords, axis=None):
self.coordinate_movie.append(coords)
if self.write_axis:
self.axis_movie.append(axis)
def write_trajectory_movie(self, filename):
# Generate movie PDB of fitting trajectories
f=open(filename,'w')
model=1
for coord_frame,ax_frame in zip(self.coordinate_movie,self.axis_movie):
resid=1
atomnumb=2
f.write('MODEL{:>8s}\n'.format(str(model)))
for i in coord_frame:
f.write('ATOM{:>7s} CA ALA A{:>4s} {:>7.3f} {:>7.3f} {:>7.3f} 1.00 0.00 C\n'.format(str(atomnumb),str(resid),float(i[0]),float(i[1]),float(i[2])))
resid=resid+1
atomnumb=atomnumb+10
if self.write_axis:
for i in ax_frame:
f.write('ATOM{:>7s} CA ALA B{:>4s} {:>7.3f} {:>7.3f} {:>7.3f} 1.00 0.00 C\n'.format(str(atomnumb),str(resid),float(i[0]),float(i[1]),float(i[2])))
resid=resid+1
atomnumb=atomnumb+10
f.write('TER\n')
f.write('ENDMDL\n')
model=model+1
f.write('END')
f.close()
def plot_trajectory_rmsd(self, ax=None):
# Plot minimization trajectories
if ax is None:
fig, ax = plt.subplots()
#warning, don't know how to get fig if ax is passed to us. Do I need fig? probably not
plt.plot(self.rmsd, axes=ax, label=self.name())
ax.set_title('Minimization trajectory')
ax.set_xlabel('Minimization steps')
ax.set_ylabel('RMSD ($\AA$)')
plt.legend(loc='best')
print("final rmsd: " + str(self.rmsd[-1]))
return ax
def plot_trajectory_parameter(self, parameter:str=None, ax=None):
if ax is None:
fig, ax = plt.subplots()
#warning, don't know how to get fig if ax is passed to us. Do I need fig? probably not
data = [timepoint[parameter] for timepoint in self.parameter_history]
plt.plot(data, axes=ax, label=self.name())
ax.set_title('Minimization trajectory for ' + parameter)
ax.set_xlabel('Minimization steps')
ax.set_ylabel('parameter value')
plt.legend(loc='best')
return ax
def append_trajectory_parameters(self,hp:HelixParameters=None):
self.parameter_history.append(hp.get_dict())
class ParametricHelix():
def __init__(self,name:str=None,z_aligned:bool=False):
self.helix_parameters = HelixParameters()
self._name = None
self.name(name)
self.z_aligned = z_aligned
def name(self,name:str=None):
if name is not None:
self._name = name
return self._name
def is_named(self):
return self._name is not None
def get_helix_parameters(self):
#may want to make this a deep copy?
return self.helix_parameters
#### FUNCTIONS ####
# Parametric helix equation based on Huang et al. equations as described in SI
# Contains small patch to make it compatible with BundleGridSampler mover (due to differences in origin definition)
#----------MAKE CARTESIAN COORDINATES FOR CA OF RESIDUE t---------------
def cartesian(self,t):
#def cartesian(r0, omega0, omega1, phi0, phi1, delta_z):
# d AND r1 SHOULD NOT BE VARIED IF WANT TO RETAIN IDEAL ALPHA-HELIX
d = self.helix_parameters.d()
r1 = self.helix_parameters.r1()
r0 = self.helix_parameters.r0()
omega0 = self.helix_parameters.omega0()
omega1 = self.helix_parameters.omega1()
phi0 = self.helix_parameters.phi0()
phi1 = self.helix_parameters.phi1()
delta_z = self.helix_parameters.delta_z()
# ONLY FUNCTIONS OF OTHER PARAMETERS
pre_asin = np.clip((r0*omega0)/d,-1,1) #ryan added this hack
alpha=asin(pre_asin) # CONSTRAINED (function of other variables), pitch angle, [radians] -- BundleGridSampler=delta_omega1_peratom?
phi_prime0=phi0+delta_z*tan(alpha)/r0 # CONSTRAINED (function of other variables), superhelical phase decoupled from delta_z, [radians]
x=r0*cos(omega0*t+phi_prime0)+r1*cos(omega0*t+phi_prime0)*cos(omega1*t+phi1)-r1*cos(alpha)*sin(omega0*t+phi_prime0)*sin(omega1*t+phi1)
y=r0*sin(omega0*t+phi_prime0)+r1*sin(omega0*t+phi_prime0)*cos(omega1*t+phi1)+r1*cos(alpha)*cos(omega0*t+phi_prime0)*sin(omega1*t+phi1)
z=((omega0*r0)/(tan(alpha)))*t-r1*sin(alpha)*sin(omega1*t+phi1)+delta_z
return [x,y,z]
#---------MAKE ARRAY OF XYZ COORDINATES FOR ALL CA-----------------------
#residue_indices would be given like Huang's convention but 0 indexed (0 = first res). Going under the first res means negative numbers
def moving(self,residue_indices=None):
if residue_indices is None:
# PATCH TO BRIDGE DIFFERENCES IN HOW THE 'ORIGIN' IS DEFINED
delta_t=int(self.helix_parameters.length()/2)# define an offset of half-helix length (in number of residues) -- BundleGridSampler=delta_t
# 're-number' indices +/- around middle of helix
# to patch Vikram's convention (start from middle of helix) and Huang's convention (start at resid 1)
# Correct for helices that have odd numbers of residues (otherwise fitting helix will be one residue short)
if (self.helix_parameters.length() % 2) == 0:
residue_renumber_indices=np.arange(-delta_t,+delta_t,1)
if (self.helix_parameters.length() % 2) != 0:
residue_renumber_indices=np.arange(-delta_t,+delta_t+1,1)
else:
residue_renumber_indices = residue_indices
print('this is almost certainly not what I wnat to do') #gosh I wish I could remember what this note was here for
if self.helix_parameters.invert(): # change direction of helix
residue_renumber_indices=-1*residue_renumber_indices
moving_coordinates = np.array([self.cartesian(t) for t in residue_renumber_indices])
return moving_coordinates
def Ca_coords_from_stored_params(self,axis=False,residue_indices=None):
#print("Ca_coords_from_stored_params")
#print("residue_indices")
#print(residue_indices)
move = self.moving(residue_indices)
#print("move")
#print(move)
padded_move = np.append(move,[[1]]*move.shape[0], axis = 1)
transformed = self.helix_parameters.transformation_matrix().dot(padded_move.T).T
striped_transformed = np.delete(transformed,3,axis=1)
if axis:
axis = np.array([[0,0,-10],[0,0,10]])
padded_axis = np.append(axis,[[1]]*axis.shape[0], axis = 1)
transformed_axis = self.helix_parameters.transformation_matrix().dot(padded_axis.T).T
striped_axis = np.delete(transformed_axis,3,axis=1)
return striped_transformed, striped_axis
else:
return striped_transformed
#-----------Objective RMSD function used during minimization---------------
def rmsd_array(self,params, target, dummy):
# r0=params['r0']
# omega0=params['omega0']
# omega1=params['omega1']
# phi0=params['phi0']
# phi1=params['phi1']
# delta_z=params['delta_z']
# invert=params['invert']
self.helix_parameters.from_lmfit(params)
striped_transformed,striped_axis = self.Ca_coords_from_stored_params(axis=True)
subtract_coord=striped_transformed-target
rmsd_array=np.sqrt(np.sum(np.power(subtract_coord,2),axis=1))
rmsd=np.sqrt((1/self.helix_parameters.length())*np.sum(np.sum(np.power(subtract_coord,2),axis=1)))
self.fit.append_trajectory_rmsd(rmsd)
self.fit.append_trajectory_coords(striped_transformed,striped_axis)
self.fit.append_trajectory_parameters(self.helix_parameters)
print(f'rmsd={rmsd}')
return rmsd_array
#meant for users to use
#pose is assumed to be a single helix that I want to know about
def fit_target_helix(self,pose, write_axis=False):
if(not self.z_aligned):
#3 step fitting
#1) using a slightly supercoiled helix, fit the transform, everything else fixed
#2) using the fitted transform as fixed variables, fit the helical parameters
#3) fit everything,initialized with previous fits, to work out kinks
self.fit = ParametricFit(self.name(),write_axis=write_axis)
#this gets all the coordinates. I only need Calphas
#target_coords = [ [ pose.residue( r.xyz(a)) for a in range(1, pose.residue(r).natoms() + 1)] for r in range(1, pose.total_residue() + 1)]
target_helix = np.array([np.array(pose.residue(r).atom("CA").xyz()) for r in range(1, pose.total_residue() + 1)])
helix_length=len(target_helix) # number of residues in the helix, [aa]
# # not 100% sure this code will be necessary after the coordinate independence upgrade
# if (target_helix[-1]-target_helix[0])[2]<0: # check helix orientation
# invert=True
# else:
# invert=False
invert_guess=True
#some guesses
r0_guess=5 # VARY, superhelical radius, [angstrom] -- BundleGridSampler=r0
delta_z_guess=0 # VARY, offest along the z axis, [angstrom] -- BundleGridSampler=z0_offset
phi1_guess=radians(0) # VARY, helical phase (around the internal axis of that helix), [degrees] -- BundleGridSampler=delta_omega1
#phi0_guess=radians(180) # FIXED? superhelical phase, i.e. 0, 90, 180, 270 for 4 evenly spaced helices, [degrees] -- BundleGridSampler=delta_omega0
omega0_guess=radians(-2.85) # FIXED? superhelical twist (-2.85 degrees for two layers), relates to omega1, [degrees] -- BundleGridSampler=omega0
omega1_guess=radians(+102.85) # FIXED? helical twist (+102.85 degrees for two layers), relates to omega0, [degrees] -- BundleGridSampler=omega1
phi0_guess=0#radians(90)
helical_pseudo_axis = normalize(target_helix[-1] - target_helix[0])
helical_pseudo_origin = (target_helix[0] + target_helix[-1])/2
#print(target_helix[0],target_helix[-1],helical_pseudo_axis,helical_pseudo_origin)
rotate_phi_guess,rotate_theta_guess,rotate_psi_guess = R_to_euler(rotation([0,0,-1],helical_pseudo_axis))
translate_x_guess,translate_y_guess,translate_z_guess = helical_pseudo_origin
#According to Basile and Nick, the transformation I use is actually degenerate over 180deg so it won't correclty account for fully inverted helices
#to fix this, I present the following hack
orig_hp = HelixParameters(r0_guess,omega0_guess,omega1_guess,phi0_guess,phi1_guess,delta_z_guess,invert_guess,helix_length,False,translate_x_guess,translate_y_guess,translate_z_guess,rotate_phi_guess,rotate_theta_guess,rotate_psi_guess)
self.helix_parameters=orig_hp
# FIT
print("BEGIN ROUND 1")
params = self.helix_parameters.to_lmfit_parameters(round_num=1)
#fit=minimize(self.rmsd_array,params,method='leastsq',args=(target_helix,True),**{"ftol":1e-9}) #"maxiter":1000 #,**{"ftol":1.e-3}
fit=minimize(self.rmsd_array,params,method='leastsq',args=(target_helix,True),**{"ftol":1.0e-3}) #"maxiter":1000 #,**{"ftol":1.e-3}
self.helix_parameters.from_lmfit(fit.params)#retrieve last fit #not necessary I think
print("BEGIN ROUND 2")
params = self.helix_parameters.to_lmfit_parameters(round_num=2)
fit=minimize(self.rmsd_array,params,method='leastsq',args=(target_helix,True),**{'ftol':1.0e-3})#,**{"options":{"maxiter":1000}}) #,**{"ftol":1.e-3}
self.helix_parameters.from_lmfit(fit.params)#retrieve last fit #not necessary I think
print("BEGIN ROUND 3")
params = self.helix_parameters.to_lmfit_parameters(round_num=3)
fit=minimize(self.rmsd_array,params,method='leastsq',args=(target_helix,True),**{"ftol":1.0e-4})
self.helix_parameters.from_lmfit(fit.params)#retrieve last fit #not necessary I think
self.fit.parse_fit(fit)
return self.fit
else:
self.fit = ParametricFit(self.name(),write_axis=write_axis)
#this gets all the coordinates. I only need Calphas
target_helix = np.array([np.array(pose.residue(r).atom("CA").xyz()) for r in range(1, pose.total_residue() + 1)])
helix_length=len(target_helix) # number of residues in the helix, [aa]
if (target_helix[-1]-target_helix[0])[2]<0: # check helix orientation
invert_guess=True
else:
invert_guess=False
#some guesses
r0_guess=5 # VARY, superhelical radius, [angstrom] -- BundleGridSampler=r0
delta_z_guess=0 # VARY, offest along the z axis, [angstrom] -- BundleGridSampler=z0_offset
phi1_guess=radians(0) # VARY, helical phase (around the internal axis of that helix), [degrees] -- BundleGridSampler=delta_omega1
phi0_guess=radians(180) # FIXED? superhelical phase, i.e. 0, 90, 180, 270 for 4 evenly spaced helices, [degrees] -- BundleGridSampler=delta_omega0
omega0_guess=radians(-2.85) # FIXED? superhelical twist (-2.85 degrees for two layers), relates to omega1, [degrees] -- BundleGridSampler=omega0
omega1_guess=radians(+102.85) # FIXED? helical twist (+102.85 degrees for two layers), relates to omega0, [degrees] -- BundleGridSampler=omega1
#make estimates of phi0 using a target helix aligned to z
# Generate quick estimates of phi0 to pass as better guess to avoid convergence problems and math domain errors
if np.average(target_helix,axis=0)[0] > 0 and np.average(target_helix,axis=0)[1] > 0: # quadrant I
phi0_guess=radians(degrees(atan(abs(np.average(target_helix,axis=0)[1])/abs(np.average(target_helix,axis=0)[0]))))
if np.average(target_helix,axis=0)[0] < 0 and np.average(target_helix,axis=0)[1] > 0: # quadrant II
phi0_guess=radians(180-degrees(atan(abs(np.average(target_helix,axis=0)[1])/abs(np.average(target_helix,axis=0)[0]))))
if np.average(target_helix,axis=0)[0] < 0 and np.average(target_helix,axis=0)[1] < 0: # quadrant III
phi0_guess=radians(degrees(atan(abs(np.average(target_helix,axis=0)[1])/abs(np.average(target_helix,axis=0)[0])))+180)
if np.average(target_helix,axis=0)[0] > 0 and np.average(target_helix,axis=0)[1] < 0: # quadrant IV
phi0_guess=radians(360-degrees(atan(abs(np.average(target_helix,axis=0)[1])/abs(np.average(target_helix,axis=0)[0]))))
orig_hp = HelixParameters(r0_guess,omega0_guess,omega1_guess,phi0_guess,phi1_guess,delta_z_guess,invert_guess,helix_length,True)
self.helix_parameters=orig_hp
params = self.helix_parameters.to_lmfit_parameters()
# fit=minimize(self.rmsd_array,params,method='leastsq',args=(target_helix,True),**{"ftol":1e-3}) #"maxiter":1000 #,**{"ftol":1.e-3}
fit=minimize(self.rmsd_array,params,method='leastsq',args=(target_helix,True),**{"ftol":1e-3}) #"maxiter":1000 #,**{"ftol":1.e-3}
self.helix_parameters.from_lmfit(fit.params)
self.fit.parse_fit(fit)
return self.fit
#assume it has ss
def find_helices_in_chain(self,input_pose,chain,min_len=3):
pyrosetta.rosetta.core.scoring.dssp.Dssp(pose).insert_ss_into_pose(pose, True) #for some reason the ss wasn't being stored?
#print(f"chain = {chain}")
chain_helix_resis=[]
current_helix_resis=[]
for res_num in pyrosetta.rosetta.core.pose.get_resnums_for_chain_id(pose,chain):
res_ss = pose.secstruct(res_num)
if res_ss == 'H':
current_helix_resis.append(res_num)
else:
if len(current_helix_resis) >= min_len:
chain_helix_resis.append(current_helix_resis)
current_helix_resis = []
if len(current_helix_resis) >= min_len:
chain_helix_resis.append(current_helix_resis)
return chain_helix_resis
def extract_helix(self,input_pose,helix_number,min_len=3,extract_end:str=None,extract_range:int=None):
#print(helix_number)
pose = pyrosetta.Pose()
pose.assign(input_pose)
pyrosetta.rosetta.core.scoring.dssp.Dssp(pose).insert_ss_into_pose(pose, True)
all_helix_resis=[]
for chain in pyrosetta.rosetta.core.pose.get_chains(pose):
chain_helix_resis=self.find_helices_in_chain(pose,chain,min_len)
all_helix_resis.extend(chain_helix_resis)
#print(all_helix_resis)
#rint(len(all_helix_resis))
target_helix_resis = all_helix_resis[helix_number]
if extract_range is not None:
assert(extract_range >= 4) #if it's less than 11/3 I think we can't fit it
assert(extract_end is not None)
if extract_end.lower() == "n":
target_helix_resi_start = target_helix_resis[0]
target_helix_resis_end = target_helix_resis[extract_range]
elif extract_end.lower() == "c":
target_helix_resi_start = target_helix_resis[-extract_range]
target_helix_resis_end = target_helix_resis[-1]
else:
target_helix_resi_start = target_helix_resis[0]
target_helix_resis_end = target_helix_resis[-1]
krm = pyrosetta.rosetta.protocols.grafting.simple_movers.KeepRegionMover()
krm.region(str(target_helix_resi_start),str(target_helix_resis_end))
pose.dump_pdb("00_before.pdb")
krm.apply(pose)
pose.dump_pdb(f"01_isolated_helix_{helix_number}.pdb")
return pose
# Define 'stub' (from 3 atoms) - necessary for computing the transformation matrix that matches the structures
def stub(self,b,a,c): # a,b,c are the vectors of a, b, c with respect to the general coordinate frame
e1=(a-b)/np.linalg.norm(a-b)
e3=np.cross(e1,(c-b))/np.linalg.norm(np.cross(e1,(c-b)))
e2=np.cross(e1,e3)/np.linalg.norm(np.cross(e1,e3))
partial_matrix = np.array([e1,e2,e3,b]).T
extra_line=np.array([[0,0,0,1]])
stub_matrix=np.append(partial_matrix,extra_line,axis=0)
return stub_matrix
def pdb_str_from_Ca(self,Ca_coordinates):
# Generate 'ideal' stub
stub_file=map(str.split,open('/home/bwicky/Design/add_buttressing_helix_to_zcon/ideal.pdb','r').readlines())
atom=[]
for line in stub_file:
atom.append(np.array([float(line[6]),float(line[7]),float(line[8])]))
ideal_stub=self.stub(atom[6],atom[1],atom[11]) # generate ideal stub from CA coordinates
pdb_str = ""
# Generate and write bb of generated helix based on its CA trace
atom_num=1
res_num=0
chain='A'
CA_chain=Ca_coordinates[:,0:3]
for res in range(1,len(CA_chain)-1):
res_num=res_num+1
actual_stub=self.stub(CA_chain[res],CA_chain[res-1],CA_chain[res+1]) # stub based on CA trace
transform=np.matmul(actual_stub,np.linalg.inv(ideal_stub)) # find transformation matrix between ideal and actual stub
# N
coords=np.matmul(transform,np.append(atom[5],1))
pdb_str += 'ATOM %6d N ALA %s %3d %8.3f%8.3f%8.3f 1.00 0.00 N\n'%(atom_num,chain,res_num,coords[0],coords[1],coords[2])
atom_num=atom_num+1
# CA (use actual CA from trace rather than superimposed one)
coords=CA_chain[res]
# If want to use CA from ideal stub instead of actual CA
# coords=np.matmul(transform,np.append(atom[6],1))
pdb_str += 'ATOM %6d CA ALA %s %3d %8.3f%8.3f%8.3f 1.00 0.00 C\n'%(atom_num,chain,res_num,coords[0],coords[1],coords[2])
atom_num=atom_num+1
# (N)H
coords=np.matmul(transform,np.append(atom[7],1))
pdb_str += 'ATOM %6d H ALA %s %3d %8.3f%8.3f%8.3f 1.00 0.00 H\n'%(atom_num,chain,res_num,coords[0],coords[1],coords[2])
atom_num=atom_num+1
# C(O)
coords=np.dot(transform,np.append(atom[8],1))
pdb_str += 'ATOM %6d C ALA %s %3d %8.3f%8.3f%8.3f 1.00 0.00 C\n'%(atom_num,chain,res_num,coords[0],coords[1],coords[2])
atom_num=atom_num+1
# O
coords=np.dot(transform,np.append(atom[9],1))
pdb_str += 'ATOM %6d O ALA %s %3d %8.3f%8.3f%8.3f 1.00 0.00 O\n'%(atom_num,chain,res_num,coords[0],coords[1],coords[2])
atom_num=atom_num+1
pdb_str += 'END'
return pdb_str
def pdb_str(self):
return self.pdb_str_from_Ca(self.Ca_coords_from_stored_params())
# Function that takes CA coordinates as input and return ideal helix backbone in a pose
def pose_from_Ca(self,Ca_coordinates):
pdb_str = self.pdb_str_from_Ca(Ca_coordinates)
pose = pyrosetta.Pose()
pyrosetta.rosetta.core.import_pose.pose_from_pdbstring(pose, pdb_str)
return pose
def pose(self):
return self.pose_from_Ca(self.Ca_coords_from_stored_params())
def set_helix_parameters(self,params:HelixParameters):
self.helix_parameters = params
#build range assumes the middle of the helix is residue 0 or -1(?). pos = N, neg = C
#Sure, I could make this elegant. But will I? Nah
def build_helix(self, start:int,stop:int):
assert(start < stop)
#build helix, if not given start and stop
return self.pose_from_Ca(self.Ca_coords_from_stored_params(residue_indices=np.arange(start,stop+1,1)))
def terminal_helix_number(self,pose,target_chain,direction):
pyrosetta.rosetta.core.scoring.dssp.Dssp(pose).insert_ss_into_pose(pose, True)
all_helix_resis=[]
for chain in pyrosetta.rosetta.core.pose.get_chains(pose):
chain_helix_resis=self.find_helices_in_chain(pose,chain)
all_helix_resis.extend(chain_helix_resis)
print(all_helix_resis)
if chain == pyrosetta.rosetta.core.pose.get_chain_id_from_chain(target_chain,pose):
if direction.lower() =='c':
return len(all_helix_resis)
else:
return len(all_helix_resis) - len(chain_helix_resis)
#something went wrong!
print(f"target_chain {target_chain} not found!")
return -1
#this really only supports extending terminal helices. I don't want to have to
#consider the case of extending an internal helix. Therefore this mover will be fixed to
#extending terminal helices. This lets me assume that I can delete everything at the terminus
def extend_terminal_helix(self,pose,chain,direction,num_extend,num_fit=None):
print(f"I have chain={chain},direction={direction},num_extend={num_extend},and num_fit={num_fit}")
helix_number = self.terminal_helix_number(pose,chain,direction)
print(f"helix chosen: {helix_number}")
target_helix = self.extract_helix(pose,helix_number,extract_end=direction,extract_range=num_fit)
fit = self.fit_target_helix(target_helix)
original_length = len(target_helix)
#make the helix a little longer so I can have some wiggle room for making the fusion
if direction.lower() == "c":
#I don't think the length matters?
adj_stop = (-original_length/2) + 6
adj_start = (-original_length/2) - num_extend
elif direction.lower() == 'n':
if original_length % 2 == 0: #even
adj_stop = (original_length / 2) + num_extend
adj_start = (original_length / 2) - 6
else:#odd
adj_stop = (original_length / 2) + 1 + num_extend
adj_start = (original_length / 2) + 1 - 6
else:
exit(f"{direction} isn't a valid direction. Use 'N' or 'C'")
print("building residue indices")
print(adj_start,adj_stop)
residue_indices = np.arange(adj_start,adj_stop,1)
print(residue_indices)
Ca_helix_extension = self.Ca_coords_from_stored_params(residue_indices=residue_indices)
pdb_str = self.pdb_str_from_Ca(Ca_helix_extension)
temp_pdb = tempfile.NamedTemporaryFile(delete=False,dir="/net/scratch/rdkibler/",suffix=".pdb")
temp_pdb.write(pdb_str.encode())
temp_pdb.close() #tempfile not immediately deleted
print(temp_pdb.name)
!cat {temp_pdb.name}
# try:
# pyrosetta.rosetta.protocols.rosetta_scripts.XmlObjects.create_from_string(f"""
# <SCOREFXNS>
# <ScoreFunction name="sfxn_asym" weights="beta_nov16" symmetric="0" />
# </SCOREFXNS>
# <RESIDUE_SELECTORS>
# <True name="all" />
# </RESIDUE_SELECTORS>
# <MOVERS>
# <AddResidueLabel name="no_des" residue_selector="all" label="all" />
# <MergePDB name="mergePDB"
# attachment_termini="{direction.lower()}_term"
# chain="{chain}"
# overlap_length="4"
# overlap_rmsd="0.5"
# attach_pdb="{temp_pdb.name}"
# design_range="0"
# packing_range="0"
# overlap_scan_range_cmdLine_pose="4"
# overlap_scan_range_xml_pose="4"
# scorefxn="sfxn_asym"
# no_design_label="all"
# init_overlap_sequence="input_pose"
# output_only_first="true" />
# <ParsedProtocol name="merge">