forked from peterbourgon/diskv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiskv.go
504 lines (431 loc) · 12.5 KB
/
diskv.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// Diskv (disk-vee) is a simple, persistent, key-value store.
// It stores all data flatly on the filesystem.
package diskv
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"os"
"path"
"path/filepath"
"sync"
)
const (
defaultBasePath = "diskv"
defaultFilePerm os.FileMode = 0666
defaultPathPerm os.FileMode = 0777
)
var (
defaultTransform = func(s string) []string { return []string{} }
)
// A TransformFunc transforms a key into a slice of strings, with each
// element in the slice representing a directory in the file path
// where the key's entry will eventually be stored.
//
// For example, if TransformFunc transforms "abcdef" to ["ab", "cde", "f"],
// the final location of the data file will be <basedir>/ab/cde/f/abcdef
type TransformFunction func(s string) []string
// Options define a set of properties that dictate Diskv behavior.
// All values are optional.
type Options struct {
BasePath string
Transform TransformFunction
CacheSizeMax uint64 // bytes
PathPerm os.FileMode
FilePerm os.FileMode
Index Index
IndexLess LessFunction
Compression Compression
}
// Diskv implements the Diskv interface. You shouldn't construct Diskv
// structures directly; instead, use the New constructor.
type Diskv struct {
sync.RWMutex
Options
cache map[string][]byte
cacheSize uint64
}
// New returns an initialized Diskv structure, ready to use.
// If the path identified by baseDir already contains data,
// it will be accessible, but not yet cached.
func New(options Options) *Diskv {
if options.BasePath == "" {
options.BasePath = defaultBasePath
}
if options.Transform == nil {
options.Transform = defaultTransform
}
if options.PathPerm == 0 {
options.PathPerm = defaultPathPerm
}
if options.FilePerm == 0 {
options.FilePerm = defaultFilePerm
}
d := &Diskv{
Options: options,
cache: map[string][]byte{},
cacheSize: 0,
}
if d.Index != nil && d.IndexLess != nil {
d.Index.Initialize(d.IndexLess, d.Keys())
}
return d
}
// Write synchronously writes the key-value pair to disk, making it immediately
// available for reads. Write relies on the filesystem to perform an eventual
// sync to physical media. If you need stronger guarantees, see WriteStream.
func (d *Diskv) Write(key string, val []byte) error {
return d.write(key, bytes.NewBuffer(val), false)
}
// WriteStream writes the data represented by the io.Reader to the disk, under
// the provided key. If sync is true, WriteStream performs an explicit sync on
// the file as soon as it's written.
//
// bytes.Buffer provides io.Reader semantics for basic data types.
func (d *Diskv) WriteStream(key string, r io.Reader, sync bool) error {
return d.write(key, r, sync)
}
// write synchronously writes the key-value pair to disk,
// making it immediately available for reads. write optionally
// performs a Sync on the relevant file descriptor.
func (d *Diskv) write(key string, r io.Reader, sync bool) error {
if len(key) <= 0 {
return fmt.Errorf("empty key")
}
// TODO use atomic FS ops in write()
d.Lock()
defer d.Unlock()
if err := d.ensurePath(key); err != nil {
return fmt.Errorf("ensure path: %s", err)
}
mode := os.O_WRONLY | os.O_CREATE | os.O_TRUNC // overwrite if exists
f, err := os.OpenFile(d.completeFilename(key), mode, d.FilePerm)
if err != nil {
return fmt.Errorf("open file: %s", err)
}
var wc io.WriteCloser = &nopWriteCloser{f}
if d.Compression != nil {
wc, err = d.Compression.Writer(f)
if err != nil {
f.Close() // error deliberately ignored
return fmt.Errorf("compression writer: %s", err)
}
}
if _, err := io.Copy(wc, r); err != nil {
f.Close() // error deliberately ignored
return fmt.Errorf("i/o copy: %s", err)
}
if err := wc.Close(); err != nil {
return fmt.Errorf("compression close: %s", err)
}
if sync {
if err := f.Sync(); err != nil {
f.Close() // error deliberately ignored
return fmt.Errorf("file sync: %s", err)
}
}
if err := f.Close(); err != nil {
return fmt.Errorf("file close: %s", err)
}
if d.Index != nil {
d.Index.Insert(key)
}
delete(d.cache, key) // cache only on read
return nil
}
// Read reads the key and returns the value.
// If the key is available in the cache, Read won't touch the disk.
// If the key is not in the cache, Read will have the side-effect of
// lazily caching the value.
func (d *Diskv) Read(key string) ([]byte, error) {
d.RLock()
// We have to do a manual dance with the read lock here, because
// the ReadCloser returned by read() will attempt to siphon (write)
// to the cache.
if val, ok := d.cache[key]; ok {
d.RUnlock()
if d.Compression != nil {
r, err := d.Compression.Reader(bytes.NewBuffer(val))
if err != nil {
return []byte{}, err
}
return ioutil.ReadAll(r)
}
return val, nil
}
rc, err := d.read(key)
d.RUnlock()
if err != nil {
return []byte{}, err
}
defer rc.Close()
return ioutil.ReadAll(rc)
}
// ReadStream reads the key and returns the value (data) as an io.ReadCloser.
// If the value is cached from a previous read, ReadStream will use the cached
// value. Otherwise, it will return a handle to the file on disk.
//
// ReadStream taps into the io.Reader stream prior to decompression, and caches
// that data, if it's able to.
func (d *Diskv) ReadStream(key string) (io.ReadCloser, error) {
d.RLock()
defer d.RUnlock()
if val, ok := d.cache[key]; ok {
buf := bytes.NewBuffer(val)
if d.Compression != nil {
return d.Compression.Reader(buf)
}
return ioutil.NopCloser(buf), nil
}
return d.read(key)
}
// read ignores the cache, and returns an io.ReadCloser representing the
// decompressed data for the given key, streamed from the disk. Clients should
// acquire a read lock on the Diskv and check the cache themselves before
// calling read.
func (d *Diskv) read(key string) (io.ReadCloser, error) {
filename := d.completeFilename(key)
fi, err := os.Stat(filename)
if err != nil {
return nil, err
}
if fi.IsDir() {
return nil, os.ErrNotExist
}
f, err := os.Open(filename)
if err != nil {
return nil, err
}
r := newSiphon(f, d, key)
var rc io.ReadCloser = ioutil.NopCloser(r)
if d.Compression != nil {
rc, err = d.Compression.Reader(r)
if err != nil {
return nil, err
}
}
return rc, nil
}
// siphon is like a TeeReader: it copies all data read through it to an
// internal buffer, and moves that buffer to the cache at EOF.
type siphon struct {
f *os.File
d *Diskv
key string
buf *bytes.Buffer
}
// newSiphon constructs a siphoning reader that represents the passed file.
// When a successful series of reads ends in an EOF, the siphon will write
// the buffered data to Diskv's cache under the given key.
func newSiphon(f *os.File, d *Diskv, key string) io.Reader {
return &siphon{
f: f,
d: d,
key: key,
buf: &bytes.Buffer{},
}
}
// Read implements the io.Reader interface for siphon.
func (s *siphon) Read(p []byte) (int, error) {
n, err := s.f.Read(p)
if err == nil {
return s.buf.Write(p[0:n]) // Write must succeed for Read to succeed
}
if err == io.EOF {
s.d.cacheWithoutLock(s.key, s.buf.Bytes()) // cache may fail
if closeErr := s.f.Close(); closeErr != nil {
return n, closeErr // close must succeed for Read to succeed
}
return n, err
}
return n, err
}
// Erase synchronously erases the given key from the disk and the cache.
func (d *Diskv) Erase(key string) error {
d.Lock()
defer d.Unlock()
// erase from cache
if val, ok := d.cache[key]; ok {
d.cacheSize -= uint64(len(val))
delete(d.cache, key)
}
// erase from index
if d.Index != nil {
d.Index.Delete(key)
}
// erase from disk
filename := d.completeFilename(key)
if s, err := os.Stat(filename); err == nil {
if !!s.IsDir() {
return fmt.Errorf("bad key")
}
if err = os.Remove(filename); err != nil {
return err
}
} else {
return err
}
// clean up and return
d.pruneDirs(key)
return nil
}
// EraseAll will delete all of the data from the store, both in the cache and on
// the disk. Note that EraseAll doesn't distinguish diskv-related data from non-
// diskv-related data. Care should be taken to always specify a diskv base
// directory that is exclusively for diskv data.
func (d *Diskv) EraseAll() error {
d.Lock()
defer d.Unlock()
d.cache = make(map[string][]byte)
d.cacheSize = 0
return os.RemoveAll(d.BasePath)
}
// Has returns true if the given key exists.
func (d *Diskv) Has(key string) bool {
d.Lock()
defer d.Unlock()
if _, ok := d.cache[key]; ok {
return true
}
filename := d.completeFilename(key)
s, err := os.Stat(filename)
if err != nil {
return false
}
if s.IsDir() {
return false
}
return true
}
// Keys returns a channel that will yield every key accessible by the store in
// undefined order.
func (d *Diskv) Keys() <-chan string {
c := make(chan string)
go func() {
filepath.Walk(d.BasePath, walker(c))
close(c)
}()
return c
}
// walker returns a function which satisfies the filepath.WalkFunc interface.
// It sends every non-directory file entry down the channel c.
func walker(c chan string) func(path string, info os.FileInfo, err error) error {
return func(path string, info os.FileInfo, err error) error {
if err == nil && !info.IsDir() {
c <- info.Name()
}
return nil // "pass"
}
}
// pathFor returns the absolute path for location on the filesystem where the
// data for the given key will be stored.
func (d *Diskv) pathFor(key string) string {
return fmt.Sprintf(
"%s%c%s",
d.BasePath,
os.PathSeparator,
path.Join(d.Transform(key)...),
)
}
// ensureDir is a helper function that generates all necessary directories on
// the filesystem for the given key.
func (d *Diskv) ensurePath(key string) error {
return os.MkdirAll(d.pathFor(key), d.PathPerm)
}
// completeFilename returns the absolute path to the file for the given key.
func (d *Diskv) completeFilename(key string) string {
return fmt.Sprintf("%s%c%s", d.pathFor(key), os.PathSeparator, key)
}
// cacheWithLock attempts to cache the given key-value pair in the store's
// cache. It can fail if the value is larger than the cache's maximum size.
func (d *Diskv) cacheWithLock(key string, val []byte) error {
valueSize := uint64(len(val))
if err := d.ensureCacheSpaceFor(valueSize); err != nil {
return fmt.Errorf("%s; not caching", err)
}
// be very strict about memory guarantees
if (d.cacheSize + valueSize) > d.CacheSizeMax {
panic(
fmt.Sprintf(
"failed to make room for value (%d/%d)",
valueSize,
d.CacheSizeMax,
),
)
}
d.cache[key] = val
d.cacheSize += valueSize
return nil
}
// cacheWithoutLock acquires the store's (write) mutex and calls cacheWithLock.
func (d *Diskv) cacheWithoutLock(key string, val []byte) error {
d.Lock()
defer d.Unlock()
return d.cacheWithLock(key, val)
}
// pruneDirs deletes empty directories in the path walk leading to the key k.
// Typically this function is called after an Erase is made.
func (d *Diskv) pruneDirs(key string) error {
pathlist := d.Transform(key)
for i := range pathlist {
pslice := pathlist[:len(pathlist)-i]
dir := fmt.Sprintf(
"%s%c%s",
d.BasePath,
os.PathSeparator,
path.Join(pslice...),
)
// thanks to Steven Blenkinsop for this snippet
switch fi, err := os.Stat(dir); true {
case err != nil:
return err
case !fi.IsDir():
panic(fmt.Sprintf("corrupt dirstate at %s", dir))
}
nlinks, err := filepath.Glob(fmt.Sprintf("%s%c*", dir, os.PathSeparator))
if err != nil {
return err
} else if len(nlinks) > 0 {
return nil // has subdirs -- do not prune
}
if err = os.Remove(dir); err != nil {
return err
}
}
return nil
}
// ensureCacheSpaceFor deletes entries from the cache in arbitrary order until
// the cache has at least valueSize bytes available.
func (d *Diskv) ensureCacheSpaceFor(valueSize uint64) error {
if valueSize > d.CacheSizeMax {
return fmt.Errorf(
"value size (%d bytes) too large for cache (%d bytes)",
valueSize,
d.CacheSizeMax,
)
}
safe := func() bool { return (d.cacheSize + valueSize) <= d.CacheSizeMax }
for key, val := range d.cache {
if safe() {
break
}
delete(d.cache, key) // delete is safe, per spec
d.cacheSize -= uint64(len(val)) // len should return uint :|
}
if !safe() {
panic(fmt.Sprintf(
"%d bytes still won't fit in the cache! (max %d bytes)",
valueSize,
d.CacheSizeMax,
))
}
return nil
}
// nopWriteCloser wraps an io.Writer and provides a no-op Close method to
// satisfy the io.WriteCloser interface.
type nopWriteCloser struct {
w io.Writer
}
func (wc *nopWriteCloser) Write(p []byte) (int, error) { return wc.w.Write(p) }
func (wc *nopWriteCloser) Close() error { return nil }