forked from djole/IR2L
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnavigation_2d.py
389 lines (331 loc) · 13.8 KB
/
navigation_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
""" 2D navigation environment """
import gym
import torch
import matplotlib.pyplot as plt
import numpy as np
from gym import spaces
from gym.utils import seeding
import numpy as np
from baselines.common.vec_env.shmem_vec_env import ShmemVecEnv
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from math import pi, cos, sin, pow, sqrt
HORIZON = 20
START = [0.0, 0.0]
STEP_SIZE = 0.1
LIDARS_KEY = "lidars"
DIST_KEY = "dist"
NONE_KEY = "none"
SMALL_NOGO_UPPER = 0.3
SMALL_NOGO_LOWER = 0.2
LARGE_NOGO_UPPER = 0.4
LARGE_NOGO_LOWER = 0.05
def dist_2_nogo(x, y, all_dists=False):
dist_fst = sqrt(pow(x - 0.25, 2) + pow(y - 0.25, 2))
dist_snd = sqrt(pow(x + 0.25, 2) + pow(y - 0.25, 2))
dist_trd = sqrt(pow(x - 0.25, 2) + pow(y + 0.25, 2))
dist_frt = sqrt(pow(x + 0.25, 2) + pow(y + 0.25, 2))
min_dist = min([dist_fst, dist_snd, dist_trd, dist_frt])
return [dist_fst, dist_snd, dist_trd, dist_frt] if all_dists else min_dist
def is_nogo(x, y, low, up):
"""Check if agent is in the nogo zone"""
fst_square = (low < x < up) and (low < y < up)
snd_square = (-up < x < -low) and (low < y < up)
trd_square = (low < x < up) and (-up < y < -low)
frt_square = (-up < x < -low) and (-up < y < -low)
if fst_square or snd_square or trd_square or frt_square:
return True
return False
def intersection(p1, p2, q1, q2):
# Return whether one line is crossing the other and at which percentage of the length
p1 = np.array(p1)
p2 = np.array(p2)
q1 = np.array(q1)
q2 = np.array(q2)
b = q1 - p1
A = np.array([p2 - p1, q1 - q2]).transpose()
try:
segments = np.linalg.solve(A, b)
except np.linalg.LinAlgError:
return (False, None)
is_cross = np.logical_and(segments >= 0, segments <= 1.0).all()
if is_cross:
return (True, segments)
else:
return (False, None)
def is_stepping_over_square(p1, p2, sq_p1, sq_p3):
sq_p2 = (sq_p1[0], sq_p3[1])
sq_p4 = (sq_p3[0], sq_p1[1])
c_segs = [None, None, None, None]
int1, c_segs[0] = intersection(p1, p2, sq_p1, sq_p2)
int2, c_segs[1] = intersection(p1, p2, sq_p2, sq_p3)
int3, c_segs[2] = intersection(p1, p2, sq_p3, sq_p4)
int4, c_segs[3] = intersection(p1, p2, sq_p4, sq_p1)
return (int1 or int2 or int3 or int4), c_segs
def is_crossing_nogo(prev_point, point, low, high, check_trajectory=True):
current_is_nogo = is_nogo(point[0], point[1], low, high)
prev_is_nogo = is_nogo(prev_point[0], prev_point[1], low, high)
if check_trajectory and current_is_nogo:
return (True, 0)
if check_trajectory and (prev_is_nogo and not current_is_nogo):
return (False, None)
else:
# Check if the agent is in nogo
if prev_is_nogo and not check_trajectory:
return (True, 0)
# Check squares
c_segs = []
fst, segs = is_stepping_over_square(prev_point, point, (low, low), (high, high))
c_segs.extend(segs)
snd, segs = is_stepping_over_square(
prev_point, point, (-low, low), (-high, high)
)
c_segs.extend(segs)
trd, segs = is_stepping_over_square(
prev_point, point, (low, -low), (high, -high)
)
c_segs.extend(segs)
fourth, segs = is_stepping_over_square(
prev_point, point, (-low, -low), (-high, -high)
)
c_segs.extend(segs)
# Check for the closest intersection segment of the (p1, p2) line cast
min_seg = None
for s in c_segs:
if min_seg is None and s is not None:
min_seg = s[0]
elif s is not None and s[0] < min_seg:
min_seg = s[0]
return (fst or snd or trd or fourth), min_seg
def unpeele_navigation_env(env, envIdx):
if isinstance(env, Navigation2DEnv):
return env
elif isinstance(env, DummyVecEnv) or isinstance(env, ShmemVecEnv):
return unpeele_navigation_env(env.envs[envIdx], envIdx)
else:
try:
env = env.env
except:
env = env.venv
return unpeele_navigation_env(env, envIdx)
class Navigation2DEnv(gym.Env):
"""2D navigation problems, as described in [1]. The code is adapted from
https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/maml_examples/point_env_randgoal.py
At each time step, the 2D agent takes an action (its velocity, clipped in
[-0.1, 0.1]), and receives a penalty equal to its L2 distance to the goal
position (ie. the reward is `-distance`). The 2D navigation tasks are
generated by sampling goal positions from the uniform distribution
on [-0.5, 0.5]^2.
[1] Chelsea Finn, Pieter Abbeel, Sergey Levine, "Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks", 2017
(https://arxiv.org/abs/1703.03400)
"""
def __init__(
self,
task={},
rm_nogo=False,
reduced_sampling=False,
dist_to_nogo=None,
nogo_large=False,
all_dist_to_nogo=False,
):
super(Navigation2DEnv, self).__init__()
# Observation shape depends on the type of input:
# 'lidars' is 8 lidar rays detecting 'no-go' zones,
# 'dist' is one-dimensional distance to the closest 'no-go' zone,
# and None is a blind agent perceptualy unaware of the 'no-go' zones.
obs_shape = None
if dist_to_nogo == LIDARS_KEY:
obs_shape = (10,)
elif dist_to_nogo == DIST_KEY:
obs_shape = (6,) if all_dist_to_nogo else (3,)
elif dist_to_nogo == NONE_KEY:
obs_shape = (2,)
else:
raise ValueError("dist_to_nogo is either None, 'lidars', or 'dist'")
self.observation_space = spaces.Box(
low=-np.inf, high=np.inf, shape=obs_shape, dtype=np.float32
)
self.action_space = spaces.Box(
low=-STEP_SIZE, high=STEP_SIZE, shape=(2,), dtype=np.float32
)
self._task = task
self._goal = task.get("goal", np.zeros(2, dtype=np.float32))
self.start_state = START
self._state = np.array(self.start_state) # np.zeros(2, dtype=np.float32)
self._previous_state = np.array(self.start_state)
self.seed()
self.horizon = HORIZON
self.cummulative_reward = 0
self.episode_x_path = []
self.episode_y_path = []
self.offending_steps = []
# An option to remove no-go zones for baseline purposes
self.rm_nogo = rm_nogo
# An option that cycles only through two goals
self.reduced_sampling = reduced_sampling
# An option that removes the information from state about the distance to the center of a nogo zone
self.dist_to_nogo = dist_to_nogo
self.all_dist_to_nogo = all_dist_to_nogo
self.task_sequence = [
[0.45, 0.45],
[-0.45, -0.45],
[-0.45, 0.45],
[0.45, -0.45],
]
# Values that define the boundaries of no-go zones
self.nogo_lower = LARGE_NOGO_LOWER if nogo_large else SMALL_NOGO_LOWER
self.nogo_upper = LARGE_NOGO_UPPER if nogo_large else SMALL_NOGO_UPPER
# for info in infos:
# if 'episode' in info.keys() and info['done']:
# episode_rewards.append(info['episode']['r'])
def _sample_ring_task(self):
radius = self.np_random.uniform(0.3, 0.5, size=(1, 1))[0][0]
alpha = self.np_random.uniform(0.0, 1.0, size=(1, 1)) * 2 * pi
alpha = alpha[0][0]
goal = np.array([[radius * cos(alpha), radius * sin(alpha)]])
return goal
def _sample_square_wth_nogo_zone(self):
rand_x = self.np_random.uniform(-0.5, 0.5, size=(1, 1))[0][0]
if rand_x <= self.nogo_upper and rand_x >= -self.nogo_upper:
# If random x could be in the no-go zone
# Sample randomly from four slices
dart = self.np_random.uniform(0.0, 1.0, size=(1, 1))[0][0]
if dart <= 0.5:
rand_y = self.np_random.uniform(-0.5, -self.nogo_upper, size=(1, 1))[0][
0
]
elif dart > 0.5:
rand_y = self.np_random.uniform(self.nogo_upper, 0.5, size=(1, 1))[0][0]
else:
rand_y = self.np_random.uniform(-0.5, 0.5, size=(1, 1))[0][0]
goal = np.array([[rand_x, rand_y]])
return goal
def _sample_predetermined(self, idx):
idx = idx % len(self.task_sequence)
goals = [self.task_sequence[idx]]
return goals
def _lidar_no_go_perception(self):
# cast 8 lines 0.1 long from state position (compass rose).
# For each cast return either 0.1 (if there is no 'off-limit' zone in range), or
# the distance to the 'off-limit' zones
ray_points = [None for _ in range(8)]
ray_points[0] = self._state + np.array([0, STEP_SIZE]) # North
ray_points[1] = self._state + np.array([-STEP_SIZE, 0]) # West
ray_points[2] = self._state + np.array([0, -STEP_SIZE]) # South
ray_points[3] = self._state + np.array([STEP_SIZE, 0]) # East
ray_points[4] = self._state + np.array([-STEP_SIZE, STEP_SIZE]) # North-West
ray_points[5] = self._state + np.array([-STEP_SIZE, -STEP_SIZE]) # South-West
ray_points[6] = self._state + np.array([STEP_SIZE, -STEP_SIZE]) # South-East
ray_points[7] = self._state + np.array([STEP_SIZE, STEP_SIZE]) # North-East
lidar_ray_dist = [None for _ in range(8)]
for idx, point in enumerate(ray_points):
is_crossing, segment = is_crossing_nogo(
self._state,
point,
self.nogo_lower,
self.nogo_upper,
check_trajectory=False,
)
segment = segment if is_crossing else 1.0
lidar_ray_dist[idx] = segment# * STEP_SIZE
lidar_ray_dist = np.array(lidar_ray_dist)
return lidar_ray_dist
def seed(self, seed=None):
seed = None
self.np_random, seed = seeding.np_random(seed)
return [seed]
def sample_tasks(self, idx):
goals = (
self._sample_predetermined(idx)
if self.reduced_sampling
else self._sample_square_wth_nogo_zone()
)
# goals = self.np_random.uniform(-0.5, 0.5, size=(1, 2))
# goals = np.array(self.task_sequence)
tasks = [{"goal": goal} for goal in goals]
return tasks
def reset_task(self, task):
self._task = task
self._goal = task["goal"]
def set_random_start_state(self):
self.start_state = self._sample_ring_task().flatten()
def set_start_state(self, start_state):
try:
self.start_state = start_state.flatten()
except:
self.start_state = start_state
def reset(self):
self._state = np.array(self.start_state) # np.zeros(2, dtype=np.float32)
self.horizon = HORIZON
self.cummulative_reward = 0
self.episode_x_path.clear()
self.episode_y_path.clear()
self.offending_steps.clear()
self.episode_x_path.append(self._state[0])
self.episode_y_path.append(self._state[1])
if self.dist_to_nogo == NONE_KEY:
state_info = self._state
elif self.dist_to_nogo == DIST_KEY:
d2ng = dist_2_nogo(self._state[0], self._state[1], self.all_dist_to_nogo)
state_info = np.append(self._state, d2ng)
elif self.dist_to_nogo == LIDARS_KEY:
lidars = self._lidar_no_go_perception()
state_info = np.append(self._state, lidars)
else:
raise ValueError("Invalid distance info type.")
return state_info
def step(self, action):
np.copyto(self._previous_state, self._state)
action = np.clip(action, -0.1, 0.1)
if isinstance(action, torch.Tensor):
action = action.detach().numpy()
assert self.action_space.contains(action)
self._state = self._state + action
delta_x = self._state[0] - self._goal[0]
delta_y = self._state[1] - self._goal[1]
reward = -np.sqrt(delta_x ** 2 + delta_y ** 2)
# Check if the x and y are in the no-go zone
# If yes, punish the agent.
if (
not self.rm_nogo
and is_crossing_nogo(
self._previous_state, self._state, self.nogo_lower, self.nogo_upper
)[0]
):
reward -= 10
self.offending_steps.append(
(self._previous_state.copy(), self._state.copy())
)
reached = (np.abs(delta_x) < 0.01) and (np.abs(delta_y) < 0.01)
done = reached or self.horizon <= 0
self.horizon -= 1
self.cummulative_reward += reward
self.episode_x_path.append(self._state[0])
self.episode_y_path.append(self._state[1])
if self.dist_to_nogo == NONE_KEY:
state_info = self._state
elif self.dist_to_nogo == DIST_KEY:
d2ng = dist_2_nogo(self._state[0], self._state[1], self.all_dist_to_nogo)
state_info = np.append(self._state, d2ng)
elif self.dist_to_nogo == LIDARS_KEY:
lidars = self._lidar_no_go_perception()
state_info = np.append(self._state, lidars)
else:
raise ValueError("Invalid distance info type.")
info_dict = {
"reached": reached,
"cummulative_reward": self.cummulative_reward,
"goal": self._goal,
"done": done,
}
if done:
info_dict["path"] = list(
zip(self.episode_x_path.copy(), self.episode_y_path.copy())
)
info_dict["offending"] = list(self.offending_steps)
return (state_info, reward, done, info_dict)
def render_episode(self):
plt.figure()
plt.plot(self.episode_x_path, self.episode_y_path)
plt.plot(self._goal[0], self._goal[0], "r*")
plt.show()