-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodel_utils.py
executable file
·188 lines (150 loc) · 6.71 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from torch import nn
import torch
import torch.nn.functional as F
__all__ = ['ConvBlock2D', 'ConvBlock3D', 'ResBlock2D', 'ResBlock3D', 'MLP']
class ConvBlock2D(nn.Module):
def __init__(self, inplanes, planes, stride=1, dilation=1, norm=False, relu=False, pool=False, upsm=False):
super().__init__()
self.conv = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=not norm)
self.norm = nn.BatchNorm2d(planes) if norm else None
self.relu = nn.LeakyReLU(inplace=True) if relu else None
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) if pool else None
self.upsm = upsm
def forward(self, x):
out = self.conv(x)
out = out if self.norm is None else self.norm(out)
out = out if self.relu is None else self.relu(out)
out = out if self.pool is None else self.pool(out)
out = out if not self.upsm else F.interpolate(out, scale_factor=2, mode='bilinear', align_corners=True)
return out
class ConvBlock3D(nn.Module):
def __init__(self, inplanes, planes, stride=1, dilation=1, norm=False, relu=False, pool=False, upsm=False):
super().__init__()
self.conv = nn.Conv3d(inplanes, planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=not norm)
self.norm = nn.BatchNorm3d(planes) if norm else None
self.relu = nn.LeakyReLU(inplace=True) if relu else None
self.pool = nn.MaxPool3d(kernel_size=3, stride=2, padding=1) if pool else None
self.upsm = upsm
def forward(self, x):
out = self.conv(x)
out = out if self.norm is None else self.norm(out)
out = out if self.relu is None else self.relu(out)
out = out if self.pool is None else self.pool(out)
out = out if not self.upsm else F.interpolate(out, scale_factor=2, mode='trilinear', align_corners=True)
return out
class ResBlock2D(nn.Module):
def __init__(self, inplanes, planes, downsample=None, bias=False):
super().__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.LeakyReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResBlock3D(nn.Module):
def __init__(self, inplanes, planes, downsample=None):
super().__init__()
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm3d(planes)
self.relu = nn.LeakyReLU(inplace=True)
self.conv2 = nn.Conv3d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm3d(planes)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class MLP(nn.Module):
"""
MLP Model.
Args:
input_dim (int) : Dimension of the network input.
output_dim (int): Dimension of the network output.
hidden_sizes (list[int]): Output dimension of dense layer(s).
For example, (32, 32) means this MLP consists of two
hidden layers, each with 32 hidden units.
hidden_nonlinearity (callable): Activation function for intermediate
dense layer(s). It should return a torch.Tensor. Set it to
None to maintain a linear activation.
hidden_w_init (callable): Initializer function for the weight
of intermediate dense layer(s). The function should return a
torch.Tensor.
hidden_b_init (callable): Initializer function for the bias
of intermediate dense layer(s). The function should return a
torch.Tensor.
output_nonlinearity (callable): Activation function for output dense
layer. It should return a torch.Tensor. Set it to None to
maintain a linear activation.
output_w_init (callable): Initializer function for the weight
of output dense layer(s). The function should return a
torch.Tensor.
output_b_init (callable): Initializer function for the bias
of output dense layer(s). The function should return a
torch.Tensor.
layer_normalization (bool): Bool for using layer normalization or not.
Return:
The output torch.Tensor of the MLP
"""
def __init__(self,
input_dim,
output_dim,
hidden_sizes,
hidden_nonlinearity=F.relu,
hidden_w_init=nn.init.xavier_normal_,
hidden_b_init=nn.init.zeros_,
output_nonlinearity=None,
output_w_init=nn.init.xavier_normal_,
output_b_init=nn.init.zeros_,
layer_normalization=False):
super().__init__()
self._input_dim = input_dim
self._output_dim = output_dim
self._hidden_nonlinearity = hidden_nonlinearity
self._output_nonlinearity = output_nonlinearity
self._layer_normalization = layer_normalization
self._layers = nn.ModuleList()
prev_size = input_dim
for size in hidden_sizes:
layer = nn.Linear(prev_size, size)
hidden_w_init(layer.weight)
hidden_b_init(layer.bias)
self._layers.append(layer)
prev_size = size
layer = nn.Linear(prev_size, output_dim)
output_w_init(layer.weight)
output_b_init(layer.bias)
self._layers.append(layer)
def forward(self, input_val):
"""Forward method."""
B = input_val.size(0)
x = input_val.view(B, -1)
for layer in self._layers[:-1]:
x = layer(x)
if self._hidden_nonlinearity is not None:
x = self._hidden_nonlinearity(x)
if self._layer_normalization:
x = nn.LayerNorm(x.shape[1])(x)
x = self._layers[-1](x)
if self._output_nonlinearity is not None:
x = self._output_nonlinearity(x)
return x