forked from mozilla/telemetry-airflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathairflow.cfg
228 lines (173 loc) · 7.59 KB
/
airflow.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
[core]
# 1.10 additions
default_timezone = utc
log_filename_template = {{ ti.dag_id }}/{{ ti.task_id }}/{{ execution_date.strftime("%%Y-%%m-%%dT%%H:%%M:%%S") }}/{{ try_number }}.log
# The home folder for airflow, default is ~/airflow
airflow_home = $AIRFLOW_HOME
# The folder where your airflow pipelines live, most likely a
# subfolder in a code repository
dags_folder = $AIRFLOW_HOME/dags
# The folder where airflow should store its log files. This location
base_log_folder = $AIRFLOW_HOME/logs
# The executor class that airflow should use. Choices include
# SequentialExecutor, LocalExecutor, CeleryExecutor
executor = CeleryExecutor
# The SqlAlchemy connection string to the metadata database.
# SqlAlchemy supports many different database engine, more information
# their website
sql_alchemy_conn = $AIRFLOW_DATABASE_URL
# The SqlAlchemy pool size is the maximum number of database connections
# in the pool.
sql_alchemy_pool_size = 5
# The SqlAlchemy pool recycle is the number of seconds a connection
# can be idle in the pool before it is invalidated. This config does
# not apply to sqlite.
sql_alchemy_pool_recycle = 3600
# The amount of parallelism as a setting to the executor. This defines
# the max number of task instances that should run simultaneously
# on this airflow installation
parallelism = 16
# The number of task instances allowed to run concurrently by the scheduler
dag_concurrency = 16
# Are DAGs paused by default at creation
dags_are_paused_at_creation = True
# The maximum number of active DAG runs per DAG
max_active_runs_per_dag = 5
# Whether to load the examples that ship with Airflow. It's good to
# get started, but you probably want to set this to False in a production
# environment
load_examples = False
# Where your Airflow plugins are stored
plugins_folder = $AIRFLOW_HOME/plugins
# Secret key to save connection passwords in the db
# Setting this to $AIRFLOW_FERNET_KEY is broken in 1.9 for initdb. Set $AIRFLOW__CORE__FERNET_KEY instead
# fernet_key =
# Whether to disable pickling dags
donot_pickle = False
# How long before timing out a python file import while filling the DagBag
dagbag_import_timeout = 30
[webserver]
rbac = $WEBSERVER_USE_RBAC
# The base url of your website as airflow cannot guess what domain or
# cname you are using. This is use in automated emails that
# airflow sends to point links to the right web server
base_url = $URL
# The ip specified when starting the web server
web_server_host = 0.0.0.0
# The port on which to run the web server
web_server_port = $PORT
# Secret key used to run your flask app
secret_key = $AIRFLOW_SECRET_KEY
# Number of workers to run the Gunicorn web server
workers = 4
# The worker class gunicorn should use. Choices include
# sync (default), eventlet, gevent
worker_class = gevent
# Expose the configuration file in the web server
expose_config = true
# Set to true to turn on authentication : http://pythonhosted.org/airflow/installation.html#web-authentication
authenticate = $AIRFLOW_AUTHENTICATE
auth_backend = $AIRFLOW_AUTH_BACKEND
# Filter the list of dags by owner name (requires authentication to be enabled)
filter_by_owner = False
[email]
email_backend = $AIRFLOW_EMAIL_BACKEND
[smtp]
# If you want airflow to send emails on retries, failure, and you want to
# the airflow.utils.send_email function, you have to configure an smtp
# server here
smtp_starttls = True
smtp_ssl = False
smtp_host = $AIRFLOW_SMTP_HOST
smtp_port = 587
smtp_user = $AIRFLOW_SMTP_USER
smtp_password = $AIRFLOW_SMTP_PASSWORD
smtp_mail_from = $AIRFLOW_SMTP_FROM
[celery]
# This section only applies if you are using the CeleryExecutor in
# [core] section above
# The app name that will be used by celery
celery_app_name = airflow.executors.celery_executor
# The concurrency that will be used when starting workers with the
# "airflow worker" command. This defines the number of task instances that
# a worker will take, so size up your workers based on the resources on
# your worker box and the nature of your tasks
worker_concurrency = 32
# When you start an airflow worker, airflow starts a tiny web server
# subprocess to serve the workers local log files to the airflow main
# web server, who then builds pages and sends them to users. This defines
# the port on which the logs are served. It needs to be unused, and open
# visible from the main web server to connect into the workers.
worker_log_server_port = 8793
# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
broker_url = $AIRFLOW_BROKER_URL
# Another key Celery setting
result_backend = $AIRFLOW_RESULT_URL
# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it `airflow flower`. This defines the port that Celery Flower runs on
flower_port = $AIRFLOW_FLOWER_PORT
# Default queue that tasks get assigned to and that worker listen on.
default_queue = default
[scheduler]
# Task instances listen for external kill signal (when you clear tasks
# from the CLI or the UI), this defines the frequency at which they should
# listen (in seconds).
job_heartbeat_sec = 5
# The scheduler constantly tries to trigger new tasks (look at the
# scheduler section in the docs for more information). This defines
# how often the scheduler should run (in seconds).
scheduler_heartbeat_sec = 5
# after how much time should the scheduler terminate in seconds
# -1 indicates to run continuously (see also num_runs)
run_duration = -1
# after how much time a new DAGs should be picked up from the filesystem
min_file_process_interval = 0
dag_dir_list_interval = 300
# How often should stats be printed to the logs
print_stats_interval = 30
child_process_log_directory = ${AIRFLOW_HOME}/logs/scheduler
# Local task jobs periodically heartbeat to the DB. If the job has
# not heartbeat in this many seconds, the scheduler will mark the
# associated task instance as failed and will re-schedule the task.
scheduler_zombie_task_threshold = 300
# Turn off scheduler catchup by setting this to False.
# Default behavior is unchanged and
# Command Line Backfills still work, but the scheduler
# will not do scheduler catchup if this is False,
# however it can be set on a per DAG basis in the
# DAG definition (catchup)
catchup_by_default = True
# Statsd (https://github.com/etsy/statsd) integration settings
# statsd_on = False
# statsd_host = localhost
# statsd_port = 8125
# statsd_prefix = airflow
[mesos]
# Mesos master address which MesosExecutor will connect to.
master = localhost:5050
# The framework name which Airflow scheduler will register itself as on mesos
framework_name = Airflow
# Number of cpu cores required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_cpu = 1
# Memory in MB required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_memory = 256
# Enable framework checkpointing for mesos
# See http://mesos.apache.org/documentation/latest/slave-recovery/
checkpoint = False
# Failover timeout in milliseconds.
# When checkpointing is enabled and this option is set, Mesos waits until the configured timeout for
# the MesosExecutor framework to re-register after a failover. Mesos shuts down running tasks if the
# MesosExecutor framework fails to re-register within this timeframe.
# failover_timeout = 604800
# Enable framework authentication for mesos
# See http://mesos.apache.org/documentation/latest/configuration/
authenticate = False
# Mesos credentials, if authentication is enabled
# default_principal = admin
# default_secret = admin