forked from zjy-ucas/ChineseNER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
286 lines (249 loc) · 11.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# encoding = utf8
import numpy as np
import tensorflow as tf
from tensorflow.contrib.crf import crf_log_likelihood
from tensorflow.contrib.crf import viterbi_decode
from tensorflow.contrib.layers.python.layers import initializers
import rnncell as rnn
from utils import result_to_json
from data_utils import create_input, iobes_iob
class Model(object):
def __init__(self, config):
self.config = config
self.lr = config["lr"]
self.char_dim = config["char_dim"]
self.lstm_dim = config["lstm_dim"]
self.seg_dim = config["seg_dim"]
self.num_tags = config["num_tags"]
self.num_chars = config["num_chars"]
self.num_segs = 4
self.global_step = tf.Variable(0, trainable=False)
self.best_dev_f1 = tf.Variable(0.0, trainable=False)
self.best_test_f1 = tf.Variable(0.0, trainable=False)
self.initializer = initializers.xavier_initializer()
# add placeholders for the model
self.char_inputs = tf.placeholder(dtype=tf.int32,
shape=[None, None],
name="ChatInputs")
self.seg_inputs = tf.placeholder(dtype=tf.int32,
shape=[None, None],
name="SegInputs")
self.targets = tf.placeholder(dtype=tf.int32,
shape=[None, None],
name="Targets")
# dropout keep prob
self.dropout = tf.placeholder(dtype=tf.float32,
name="Dropout")
used = tf.sign(tf.abs(self.char_inputs))
length = tf.reduce_sum(used, reduction_indices=1)
self.lengths = tf.cast(length, tf.int32)
self.batch_size = tf.shape(self.char_inputs)[0]
self.num_steps = tf.shape(self.char_inputs)[-1]
# embeddings for chinese character and segmentation representation
embedding = self.embedding_layer(self.char_inputs, self.seg_inputs, config)
# apply dropout before feed to lstm layer
lstm_inputs = tf.nn.dropout(embedding, self.dropout)
# bi-directional lstm layer
lstm_outputs = self.biLSTM_layer(lstm_inputs, self.lstm_dim, self.lengths)
# logits for tags
self.logits = self.project_layer(lstm_outputs)
# loss of the model
self.loss = self.loss_layer(self.logits, self.lengths)
with tf.variable_scope("optimizer"):
optimizer = self.config["optimizer"]
if optimizer == "sgd":
self.opt = tf.train.GradientDescentOptimizer(self.lr)
elif optimizer == "adam":
self.opt = tf.train.AdamOptimizer(self.lr)
elif optimizer == "adgrad":
self.opt = tf.train.AdagradOptimizer(self.lr)
else:
raise KeyError
# apply grad clip to avoid gradient explosion
grads_vars = self.opt.compute_gradients(self.loss)
capped_grads_vars = [[tf.clip_by_value(g, -self.config["clip"], self.config["clip"]), v]
for g, v in grads_vars]
self.train_op = self.opt.apply_gradients(capped_grads_vars, self.global_step)
# saver of the model
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
def embedding_layer(self, char_inputs, seg_inputs, config, name=None):
"""
:param char_inputs: one-hot encoding of sentence
:param seg_inputs: segmentation feature
:param config: wither use segmentation feature
:return: [1, num_steps, embedding size],
"""
embedding = []
with tf.variable_scope("char_embedding" if not name else name), tf.device('/cpu:0'):
self.char_lookup = tf.get_variable(
name="char_embedding",
shape=[self.num_chars, self.char_dim],
initializer=self.initializer)
embedding.append(tf.nn.embedding_lookup(self.char_lookup, char_inputs))
if config["seg_dim"]:
with tf.variable_scope("seg_embedding"), tf.device('/cpu:0'):
self.seg_lookup = tf.get_variable(
name="seg_embedding",
shape=[self.num_segs, self.seg_dim],
initializer=self.initializer)
embedding.append(tf.nn.embedding_lookup(self.seg_lookup, seg_inputs))
embed = tf.concat(embedding, axis=-1)
return embed
def biLSTM_layer(self, lstm_inputs, lstm_dim, lengths, name=None):
"""
:param lstm_inputs: [batch_size, num_steps, emb_size]
:return: [batch_size, num_steps, 2*lstm_dim]
"""
with tf.variable_scope("char_BiLSTM" if not name else name):
lstm_cell = {}
for direction in ["forward", "backward"]:
with tf.variable_scope(direction):
lstm_cell[direction] = rnn.CoupledInputForgetGateLSTMCell(
lstm_dim,
use_peepholes=True,
initializer=self.initializer,
state_is_tuple=True)
# output_states:一个(output_state_fw,output_state_bw)的元组,包含bidirectional rnn的前向和后向的最终状态。
outputs, final_states = tf.nn.bidirectional_dynamic_rnn(
lstm_cell["forward"],
lstm_cell["backward"],
lstm_inputs,
dtype=tf.float32,
sequence_length=lengths)
return tf.concat(outputs, axis=2)
def project_layer(self, lstm_outputs, name=None):
"""
hidden layer between lstm layer and logits
:param lstm_outputs: [batch_size, num_steps, emb_size]
:return: [batch_size, num_steps, num_tags]
"""
with tf.variable_scope("project" if not name else name):
with tf.variable_scope("hidden"):
W = tf.get_variable("W", shape=[self.lstm_dim * 2, self.lstm_dim],
dtype=tf.float32, initializer=self.initializer)
b = tf.get_variable("b", shape=[self.lstm_dim], dtype=tf.float32,
initializer=tf.zeros_initializer())
output = tf.reshape(lstm_outputs, shape=[-1, self.lstm_dim * 2])
hidden = tf.tanh(tf.nn.xw_plus_b(output, W, b))
# project to score of tags
with tf.variable_scope("logits"):
W = tf.get_variable("W", shape=[self.lstm_dim, self.num_tags],
dtype=tf.float32, initializer=self.initializer)
b = tf.get_variable("b", shape=[self.num_tags], dtype=tf.float32,
initializer=tf.zeros_initializer())
pred = tf.nn.xw_plus_b(hidden, W, b)
return tf.reshape(pred, [-1, self.num_steps, self.num_tags])
def loss_layer(self, project_logits, lengths, name=None):
"""
calculate crf loss
:param project_logits: [1, num_steps, num_tags]
:return: scalar loss
"""
with tf.variable_scope("crf_loss" if not name else name):
small = -1000.0
# pad logits for crf loss
start_logits = tf.concat(
[small * tf.ones(shape=[self.batch_size, 1, self.num_tags]), tf.zeros(shape=[self.batch_size, 1, 1])],
axis=-1)
pad_logits = tf.cast(small * tf.ones([self.batch_size, self.num_steps, 1]), tf.float32)
logits = tf.concat([project_logits, pad_logits], axis=-1)
logits = tf.concat([start_logits, logits], axis=1)
targets = tf.concat(
[tf.cast(self.num_tags * tf.ones([self.batch_size, 1]), tf.int32), self.targets], axis=-1)
self.trans = tf.get_variable(
"transitions",
shape=[self.num_tags + 1, self.num_tags + 1],
initializer=self.initializer)
log_likelihood, self.trans = crf_log_likelihood(
inputs=logits,
tag_indices=targets,
transition_params=self.trans,
sequence_lengths=lengths + 1)
return tf.reduce_mean(-log_likelihood)
def create_feed_dict(self, is_train, batch):
"""
:param is_train: Flag, True for train batch
:param batch: list train/evaluate data
:return: structured data to feed
"""
_, chars, segs, tags = batch
feed_dict = {
self.char_inputs: np.asarray(chars),
self.seg_inputs: np.asarray(segs),
self.dropout: 1.0,
}
if is_train:
feed_dict[self.targets] = np.asarray(tags)
feed_dict[self.dropout] = self.config["dropout_keep"]
return feed_dict
def run_step(self, sess, is_train, batch):
"""
:param sess: session to run the batch
:param is_train: a flag indicate if it is a train batch
:param batch: a dict containing batch data
:return: batch result, loss of the batch or logits
"""
feed_dict = self.create_feed_dict(is_train, batch)
if is_train:
global_step, loss, _ = sess.run(
[self.global_step, self.loss, self.train_op],
feed_dict)
return global_step, loss
else:
lengths, logits = sess.run([self.lengths, self.logits], feed_dict)
return lengths, logits
def decode(self, logits, lengths, matrix):
"""
:param logits: [batch_size, num_steps, num_tags]float32, logits
:param lengths: [batch_size]int32, real length of each sequence
:param matrix: transaction matrix for inference
:return:
"""
# inference final labels usa viterbi Algorithm
paths = []
small = -1000.0
start = np.asarray([[small] * self.num_tags + [0]])
for score, length in zip(logits, lengths):
score = score[:length]
pad = small * np.ones([length, 1])
logits = np.concatenate([score, pad], axis=1)
logits = np.concatenate([start, logits], axis=0)
path, _ = viterbi_decode(logits, matrix)
paths.append(path[1:])
return paths
def evaluate(self, sess, data_manager, id_to_tag):
"""
:param sess: session to run the model
:param data: list of data
:param id_to_tag: index to tag name
:return: evaluate result
"""
results = []
trans = self.trans.eval()
for batch in data_manager.iter_batch():
strings = batch[0]
tags = batch[-1]
lengths, scores = self.run_step(sess, False, batch)
batch_paths = self.decode(scores, lengths, trans)
for i in range(len(strings)):
result = []
string = strings[i][:lengths[i]]
gold = iobes_iob([id_to_tag[int(x)] for x in tags[i][:lengths[i]]])
pred = iobes_iob([id_to_tag[int(x)] for x in batch_paths[i][:lengths[i]]])
for char, gold, pred in zip(string, gold, pred):
result.append(" ".join([char, gold, pred]))
results.append(result)
return results
def evaluate_line(self, sess, inputs, id_to_tag):
trans = self.trans.eval()
lengths, scores = self.run_step(sess, False, inputs)
batch_paths = self.decode(scores, lengths, trans)
tags = [id_to_tag[idx] for idx in batch_paths[0]]
return result_to_json(inputs[0][0], tags)
def evaluate_lines(self, sess, inputs, id_to_tag):
trans = self.trans.eval()
for item in inputs:
lengths, scores = self.run_step(sess, False, item)
batch_paths = self.decode(scores, lengths, trans)
tags = [id_to_tag[idx] for idx in batch_paths[0]]
return result_to_json(inputs[0][0], tags)