-
Notifications
You must be signed in to change notification settings - Fork 1
/
sha1.js
339 lines (306 loc) · 10.2 KB
/
sha1.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
* in FIPS 180-1
* Version 2.2 Copyright Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
*
* Modified slightly by Daniel Lucraft (2010)
*/
Sha1 = {
/*
* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/
hexcase: 0, /* hex output format. 0 - lowercase; 1 - uppercase */
b64pad: "", /* base-64 pad character. "=" for strict RFC compliance */
/*
* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/
hex_sha1: function(s) { return Sha1.rstr2hex(Sha1.rstr_sha1(Sha1.str2rstr_utf8(s))); },
b64_sha1: function(s) { return Sha1.rstr2b64(Sha1.rstr_sha1(Sha1.str2rstr_utf8(s))); },
any_sha1: function(s, e) { return Sha1.rstr2any(Sha1.rstr_sha1(Sha1.str2rstr_utf8(s)), e); },
hex_hmac_sha1: function(k, d)
{ return Sha1.rstr2hex(Sha1.rstr_hmac_sha1(Sha1.str2rstr_utf8(k), Sha1.str2rstr_utf8(d))); },
b64_hmac_sha1: function(k, d)
{ return Sha1.rstr2b64(Sha1.rstr_hmac_sha1(Sha1.str2rstr_utf8(k), Sha1.str2rstr_utf8(d))); },
any_hmac_sha1: function(k, d, e)
{ return Sha1.rstr2any(Sha1.rstr_hmac_sha1(Sha1.str2rstr_utf8(k), Sha1.str2rstr_utf8(d)), e); },
/*
* Perform a simple self-test to see if the VM is working
*/
sha1_vm_test: function()
{
return Sha1.hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
},
/*
* Calculate the SHA1 of a raw string
*/
rstr_sha1: function(s)
{
return Sha1.binb2rstr(Sha1.binb_sha1(Sha1.rstr2binb(s), s.length * 8));
},
/*
* Calculate the HMAC-SHA1 of a key and some data (raw strings)
*/
rstr_hmac_sha1: function(key, data)
{
var bkey = Sha1.rstr2binb(key);
if(bkey.length > 16) bkey = Sha1.binb_sha1(bkey, key.length * 8);
var ipad = Array(16), opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = Sha1.binb_sha1(ipad.concat(Sha1.rstr2binb(data)), 512 + data.length * 8);
return Sha1.binb2rstr(Sha1.binb_sha1(opad.concat(hash), 512 + 160));
},
/*
* Convert a raw string to a hex string
*/
rstr2hex: function(input)
{
try { Sha1.hexcase } catch(e) { Sha1.hexcase=0; }
var hex_tab = Sha1.hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
},
/*
* Convert a raw string to a base-64 string
*/
rstr2b64: function(input)
{
try { Sha1.b64pad } catch(e) { Sha1.b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
},
/*
* Convert a raw string to an arbitrary string encoding
*/
rstr2any: function(input, encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i, q, x, quotient;
/* Convert to an array of 16-bit big-endian values, forming the dividend */
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
/*
* Repeatedly perform a long division. The binary array forms the dividend,
* the length of the encoding is the divisor. Once computed, the quotient
* forms the dividend for the next step. We stop when the dividend is zero.
* All remainders are stored for later use.
*/
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
/* Convert the remainders to the output string */
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
/* Append leading zero equivalents */
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
},
/*
* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/
str2rstr_utf8: function(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
/* Decode utf-16 surrogate pairs */
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
/* Encode output as utf-8 */
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
},
/*
* Encode a string as utf-16
*/
str2rstr_utf16le: function(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
},
str2rstr_utf16be: function(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
},
/*
* Convert a raw string to an array of big-endian words
* Characters >255 have their high-byte silently ignored.
*/
rstr2binb: function(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
},
/*
* Convert an array of big-endian words to a string
*/
binb2rstr: function(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
},
/*
* Calculate the SHA-1 of an array of big-endian words, and a bit length
*/
binb_sha1: function(x, len)
{
/* append padding */
x[len >> 5] |= 0x80 << (24 - len % 32);
x[((len + 64 >> 9) << 4) + 15] = len;
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
var bit_rol = Sha1.bit_rol
var safe_add = Sha1.safe_add
var sha1_ft = Sha1.sha1_ft
var sha1_kt = Sha1.sha1_kt
for(var i = 0; i < x.length; i += 16)
{
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for(var j = 0; j < 80; j++)
{
if(j < 16) w[j] = x[i + j];
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
safe_add(safe_add(e, w[j]), sha1_kt(j)));
e = d;
d = c;
c = bit_rol(b, 30);
b = a;
a = t;
}
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
e = safe_add(e, olde);
}
return Array(a, b, c, d, e);
},
/*
* Perform the appropriate triplet combination function for the current
* iteration
*/
sha1_ft: function(t, b, c, d)
{
if(t < 20) return (b & c) | ((~b) & d);
if(t < 40) return b ^ c ^ d;
if(t < 60) return (b & c) | (b & d) | (c & d);
return b ^ c ^ d;
},
/*
* Determine the appropriate additive constant for the current iteration
*/
sha1_kt: function(t)
{
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
(t < 60) ? -1894007588 : -899497514;
},
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
safe_add: function(x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
},
/*
* Bitwise rotate a 32-bit number to the left.
*/
bit_rol: function(num, cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}
}