-
Notifications
You must be signed in to change notification settings - Fork 62
/
resnet.py
40 lines (35 loc) · 1.43 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from keras.models import Model
from keras.layers import Dense, Input, Embedding
from keras.layers import GlobalMaxPool1D, Dropout, Conv1D, BatchNormalization, Activation, Add
from keras.utils import plot_model
def block(x, kernel_size):
x_Conv_1 = Conv1D(filters=512, kernel_size=[kernel_size], strides=1, padding='same')(x)
x_Conv_1 = Activation(activation='relu')(x_Conv_1)
x_Conv_2 = Conv1D(filters=512, kernel_size=[kernel_size], strides=1, padding='same')(x_Conv_1)
x_Conv_2 = Add()([x, x_Conv_2])
x = Activation(activation='relu')(x_Conv_2)
return x
if __name__ == '__main__':
num_words = 80000
maxlen = 400
kernel_size = 3
DIM = 512
batch_size = 256
data_input = Input(shape=[maxlen])
word_vec = Embedding(input_dim=num_words + 1,
input_length=maxlen,
output_dim=DIM,
mask_zero=0,
name='Embedding')(data_input)
block1 = block(x=word_vec, kernel_size=3)
block2 = block(x=block1, kernel_size=3)
x = GlobalMaxPool1D()(block2)
x = BatchNormalization()(x)
x = Dense(1000, activation="relu")(x)
x = Dropout(0.2)(x)
x = Dense(202, activation="sigmoid")(x)
model = Model(inputs=data_input, outputs=x)
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
plot_model(model, './resnet.png', show_shapes=True)