Skip to content

Latest commit

 

History

History
87 lines (68 loc) · 3.87 KB

README.md

File metadata and controls

87 lines (68 loc) · 3.87 KB

Text-Classification

项目介绍

通过对已有标签的文本进行训练,实现新文本的分类。

更新说明

2019.3.25:项目最初是公司的一个舆情分析业务,后来参加了一些比赛又增加了一些小功能。当时只是想着把机器学习、深度学习的一些简单的模型整合在一起,锻炼一下工程能力。和一些网友交流后,觉得没必要搞一个通用型的模块(反正也没人用哈哈~)。最近刚好比较清闲,就本着越简单越好的目的把没啥用的花里胡哨的参数和函数都删了,只保留了预处理和卷积网络。

导入数据集:load_data

准备了单一标签的电商数据4000多条和多标签的司法罪名数据15000多条,数据仅供学术研究使用,禁止商业传播。

  • 单一标签的电商数据4000条为.csv格式,来源于真实电商评论,由'evaluation'和'label'两个字段组成,分别表示用户评论和正负面标签,建议pandas读取,读入后为dataframe。
  • 多标签的司法罪名数据15000条为.json格式,来源于2018‘法研杯’法律智能挑战赛(CAIL2018),由'fact'和'accusation'两个字段组成,分别表示事实陈述和罪名,读入后为列表。
from TextClassification.load_data import load_data

# 单标签
data = load_data('single')
x = data['evaluation']
y = [[i] for i in data['label']]

# 多标签
data = load_data('multiple')
x = [i['fact'] for i in data]
y = [i['accusation'] for i in data]

文本预处理:DataPreprocess.py

用于对原始文本数据做预处理,包含分词、转编码、长度统一等方法,已封装进TextClassification.py

preprocess = DataPreprocess()

# 处理文本
texts_cut = preprocess.cut_texts(texts, word_len)
preprocess.train_tokenizer(texts_cut, num_words)
texts_seq = preprocess.text2seq(texts_cut, sentence_len)

# 得到标签
preprocess.creat_label_set(labels)
labels = preprocess.creat_labels(labels)

模型训练及预测:TextClassification.py

整合预处理、网络的训练、网络的预测,demo请参考两个demo脚本

方法如下:

  • fit:输入原始文本和标签,可以在已有的模型基础上继续训练,不输入模型则重新开始训练;
  • predict:输入原始文本;
from TextClassification import TextClassification

clf = TextClassification()
texts_seq, texts_labels = clf.get_preprocess(x_train, y_train, 
                                             word_len=1, 
                                             num_words=2000, 
                                             sentence_len=50)
clf.fit(texts_seq=texts_seq,
        texts_labels=texts_labels,
        output_type=data_type,
        epochs=10,
        batch_size=64,
        model=None)

# 保存整个模块,包括预处理和神经网络
with open('./%s.pkl' % data_type, 'wb') as f:
    pickle.dump(clf, f)

# 导入刚才保存的模型
with open('./%s.pkl' % data_type, 'rb') as f:
    clf = pickle.load(f)
y_predict = clf.predict(x_test)
y_predict = [[clf.preprocess.label_set[i.argmax()]] for i in y_predict]
score = sum(y_predict == np.array(y_test)) / len(y_test)
print(score)  # 0.9288