-
Notifications
You must be signed in to change notification settings - Fork 30
/
predict.py
164 lines (144 loc) · 6.39 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import shutil
import time
from typing import Optional
import zipfile
import torch
from cog import BasePredictor, ConcatenateIterator, Input, Path
from config import DEFAULT_MODEL_NAME, load_tokenizer, load_tensorizer, pull_gcp_file
from subclass import YieldingLlama
from peft import PeftModel
import os
class Predictor(BasePredictor):
def setup(self, weights: Optional[Path] = None):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
if weights is not None and weights.name == "weights":
# bugfix
weights = None
if weights is None:
self.model = load_tensorizer(weights=DEFAULT_MODEL_NAME, plaid_mode=True, cls=YieldingLlama)
else:
weights = str(weights)
if '.zip' in weights:
self.model = self.load_peft(weights)
elif "tensors" in weights:
self.model = load_tensorizer(weights, plaid_mode=True, cls=YieldingLlama)
else:
self.model = self.load_huggingface_model(weights=weights)
self.tokenizer = load_tokenizer()
def load_peft(self, weights):
st = time.time()
if 'tensors' in DEFAULT_MODEL_NAME:
model = load_tensorizer(DEFAULT_MODEL_NAME, plaid_mode=False, cls=YieldingLlama)
else:
model = self.load_huggingface_model(DEFAULT_MODEL_NAME)
if 'https' in weights: # weights are in the cloud
local_weights = 'local_weights.zip'
pull_gcp_file(weights, local_weights)
weights = local_weights
out = '/src/peft_dir'
if os.path.exists(out):
shutil.rmtree(out)
with zipfile.ZipFile(weights, 'r') as zip_ref:
zip_ref.extractall(out)
model = PeftModel.from_pretrained(model, out)
print(f"peft model loaded in {time.time() - st}")
return model.to('cuda')
def load_huggingface_model(self, weights=None):
st = time.time()
print(f"loading weights from {weights} w/o tensorizer")
model = YieldingLlama.from_pretrained(
weights, cache_dir="pretrained_weights", torch_dtype=torch.float16
)
model.to(self.device)
print(f"weights loaded in {time.time() - st}")
return model
def predict(
self,
prompt: str = Input(description=f"Prompt to send to Llama."),
max_length: int = Input(
description="Maximum number of tokens to generate. A word is generally 2-3 tokens",
ge=1,
default=500,
),
temperature: float = Input(
description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic, 0.75 is a good starting value.",
ge=0.01,
le=5,
default=0.75,
),
top_p: float = Input(
description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens",
ge=0.01,
le=1.0,
default=1.0,
),
repetition_penalty: float = Input(
description="Penalty for repeated words in generated text; 1 is no penalty, values greater than 1 discourage repetition, less than 1 encourage it.",
ge=0.01,
le=5,
default=1,
),
debug: bool = Input(
description="provide debugging output in logs", default=False
),
) -> ConcatenateIterator[str]:
input = self.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
with torch.inference_mode() and torch.autocast("cuda"):
first_token_yielded = False
prev_ids = []
for output in self.model.generate(
input_ids=input,
max_length=max_length,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
):
cur_id = output.item()
# in order to properly handle spaces, we need to do our own tokenizing. Fun!
# we're building up a buffer of sub-word / punctuation tokens until we hit a space, and then yielding whole words + punctuation.
cur_token = self.tokenizer.convert_ids_to_tokens(cur_id)
# skip initial newline, which this almost always yields. hack - newline id = 13.
if not first_token_yielded and not prev_ids and cur_id == 13:
continue
# underscore means a space, means we yield previous tokens
if cur_token.startswith("▁"): # this is not a standard underscore.
# first token
if not prev_ids:
prev_ids = [cur_id]
continue
# there are tokens to yield
else:
token = self.tokenizer.decode(prev_ids)
prev_ids = [cur_id]
if not first_token_yielded:
# no leading space for first token
token = token.strip()
first_token_yielded = True
yield token
else:
prev_ids.append(cur_id)
continue
# remove any special tokens such as </s>
token = self.tokenizer.decode(prev_ids, skip_special_tokens=True)
if not first_token_yielded:
# no leading space for first token
token = token.strip()
first_token_yielded = True
yield token
if debug:
print(f"cur memory: {torch.cuda.memory_allocated()}")
print(f"max allocated: {torch.cuda.max_memory_allocated()}")
print(f"peak memory: {torch.cuda.max_memory_reserved()}")
class EightBitPredictor(Predictor):
"""subclass s.t. we can configure whether a model is loaded in 8bit mode from cog.yaml"""
def setup(self, weights: Optional[Path] = None):
if weights is not None and weights.name == "weights":
# bugfix
weights = None
# TODO: fine-tuned 8bit weights.
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = YieldingLlama.from_pretrained(
DEFAULT_MODEL_NAME, load_in_8bit=True, device_map="auto"
)
self.tokenizer = load_tokenizer()