-
Notifications
You must be signed in to change notification settings - Fork 0
/
Planar+data+classification+with+one+hidden+layer+v3.py
972 lines (780 loc) · 29.3 KB
/
Planar+data+classification+with+one+hidden+layer+v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
# coding: utf-8
# # Planar data classification with one hidden layer
#
# Welcome to your week 3 programming assignment. It's time to build your first neural network, which will have a hidden layer. You will see a big difference between this model and the one you implemented using logistic regression.
#
# **You will learn how to:**
# - Implement a 2-class classification neural network with a single hidden layer
# - Use units with a non-linear activation function, such as tanh
# - Compute the cross entropy loss
# - Implement forward and backward propagation
#
# ## 1 - Packages ##
#
# Let's first import all the packages that you will need during this assignment.
# - [numpy](www.numpy.org) is the fundamental package for scientific computing with Python.
# - [sklearn](http://scikit-learn.org/stable/) provides simple and efficient tools for data mining and data analysis.
# - [matplotlib](http://matplotlib.org) is a library for plotting graphs in Python.
# - testCases provides some test examples to assess the correctness of your functions
# - planar_utils provide various useful functions used in this assignment
# In[1]:
# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
get_ipython().magic('matplotlib inline')
np.random.seed(1) # set a seed so that the results are consistent
# ## 2 - Dataset ##
#
# First, let's get the dataset you will work on. The following code will load a "flower" 2-class dataset into variables `X` and `Y`.
# In[2]:
X, Y = load_planar_dataset()
# Visualize the dataset using matplotlib. The data looks like a "flower" with some red (label y=0) and some blue (y=1) points. Your goal is to build a model to fit this data.
# In[3]:
# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
# You have:
# - a numpy-array (matrix) X that contains your features (x1, x2)
# - a numpy-array (vector) Y that contains your labels (red:0, blue:1).
#
# Lets first get a better sense of what our data is like.
#
# **Exercise**: How many training examples do you have? In addition, what is the `shape` of the variables `X` and `Y`?
#
# **Hint**: How do you get the shape of a numpy array? [(help)](https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html)
# In[4]:
### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = X.shape[1] # training set size
### END CODE HERE ###
print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))
# **Expected Output**:
#
# <table style="width:20%">
#
# <tr>
# <td>**shape of X**</td>
# <td> (2, 400) </td>
# </tr>
#
# <tr>
# <td>**shape of Y**</td>
# <td>(1, 400) </td>
# </tr>
#
# <tr>
# <td>**m**</td>
# <td> 400 </td>
# </tr>
#
# </table>
# ## 3 - Simple Logistic Regression
#
# Before building a full neural network, lets first see how logistic regression performs on this problem. You can use sklearn's built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset.
# In[5]:
# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);
# You can now plot the decision boundary of these models. Run the code below.
# In[6]:
# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, Y)
plt.title("Logistic Regression")
# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
'% ' + "(percentage of correctly labelled datapoints)")
# **Expected Output**:
#
# <table style="width:20%">
# <tr>
# <td>**Accuracy**</td>
# <td> 47% </td>
# </tr>
#
# </table>
#
# **Interpretation**: The dataset is not linearly separable, so logistic regression doesn't perform well. Hopefully a neural network will do better. Let's try this now!
# ## 4 - Neural Network model
#
# Logistic regression did not work well on the "flower dataset". You are going to train a Neural Network with a single hidden layer.
#
# **Here is our model**:
# <img src="images/classification_kiank.png" style="width:600px;height:300px;">
#
# **Mathematically**:
#
# For one example $x^{(i)}$:
# $$z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}\tag{1}$$
# $$a^{[1] (i)} = \tanh(z^{[1] (i)})\tag{2}$$
# $$z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}\tag{3}$$
# $$\hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})\tag{4}$$
# $$y^{(i)}_{prediction} = \begin{cases} 1 & \mbox{if } a^{[2](i)} > 0.5 \\ 0 & \mbox{otherwise } \end{cases}\tag{5}$$
#
# Given the predictions on all the examples, you can also compute the cost $J$ as follows:
# $$J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small \tag{6}$$
#
# **Reminder**: The general methodology to build a Neural Network is to:
# 1. Define the neural network structure ( # of input units, # of hidden units, etc).
# 2. Initialize the model's parameters
# 3. Loop:
# - Implement forward propagation
# - Compute loss
# - Implement backward propagation to get the gradients
# - Update parameters (gradient descent)
#
# You often build helper functions to compute steps 1-3 and then merge them into one function we call `nn_model()`. Once you've built `nn_model()` and learnt the right parameters, you can make predictions on new data.
# ### 4.1 - Defining the neural network structure ####
#
# **Exercise**: Define three variables:
# - n_x: the size of the input layer
# - n_h: the size of the hidden layer (set this to 4)
# - n_y: the size of the output layer
#
# **Hint**: Use shapes of X and Y to find n_x and n_y. Also, hard code the hidden layer size to be 4.
# In[7]:
# GRADED FUNCTION: layer_sizes
def layer_sizes(X, Y):
"""
Arguments:
X -- input dataset of shape (input size, number of examples)
Y -- labels of shape (output size, number of examples)
Returns:
n_x -- the size of the input layer
n_h -- the size of the hidden layer
n_y -- the size of the output layer
"""
### START CODE HERE ### (≈ 3 lines of code)
n_x = X.shape[0] # size of input layer
n_h = 4
n_y = Y.shape[0] # size of output layer
### END CODE HERE ###
return (n_x, n_h, n_y)
# In[8]:
X_assess, Y_assess = layer_sizes_test_case()
(n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
print("The size of the input layer is: n_x = " + str(n_x))
print("The size of the hidden layer is: n_h = " + str(n_h))
print("The size of the output layer is: n_y = " + str(n_y))
# **Expected Output** (these are not the sizes you will use for your network, they are just used to assess the function you've just coded).
#
# <table style="width:20%">
# <tr>
# <td>**n_x**</td>
# <td> 5 </td>
# </tr>
#
# <tr>
# <td>**n_h**</td>
# <td> 4 </td>
# </tr>
#
# <tr>
# <td>**n_y**</td>
# <td> 2 </td>
# </tr>
#
# </table>
# ### 4.2 - Initialize the model's parameters ####
#
# **Exercise**: Implement the function `initialize_parameters()`.
#
# **Instructions**:
# - Make sure your parameters' sizes are right. Refer to the neural network figure above if needed.
# - You will initialize the weights matrices with random values.
# - Use: `np.random.randn(a,b) * 0.01` to randomly initialize a matrix of shape (a,b).
# - You will initialize the bias vectors as zeros.
# - Use: `np.zeros((a,b))` to initialize a matrix of shape (a,b) with zeros.
# In[9]:
# GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
"""
Argument:
n_x -- size of the input layer
n_h -- size of the hidden layer
n_y -- size of the output layer
Returns:
params -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1)
"""
np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
### START CODE HERE ### (≈ 4 lines of code)
W1 = np.random.randn(n_h,n_x) * 0.01
b1 = np.zeros((n_h,1))
W2 = np.random.randn(n_y,n_h) * 0.01
b2 = np.zeros((n_y,1))
### END CODE HERE ###
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
# In[10]:
n_x, n_h, n_y = initialize_parameters_test_case()
parameters = initialize_parameters(n_x, n_h, n_y)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
# **Expected Output**:
#
# <table style="width:90%">
# <tr>
# <td>**W1**</td>
# <td> [[-0.00416758 -0.00056267]
# [-0.02136196 0.01640271]
# [-0.01793436 -0.00841747]
# [ 0.00502881 -0.01245288]] </td>
# </tr>
#
# <tr>
# <td>**b1**</td>
# <td> [[ 0.]
# [ 0.]
# [ 0.]
# [ 0.]] </td>
# </tr>
#
# <tr>
# <td>**W2**</td>
# <td> [[-0.01057952 -0.00909008 0.00551454 0.02292208]]</td>
# </tr>
#
#
# <tr>
# <td>**b2**</td>
# <td> [[ 0.]] </td>
# </tr>
#
# </table>
#
#
# ### 4.3 - The Loop ####
#
# **Question**: Implement `forward_propagation()`.
#
# **Instructions**:
# - Look above at the mathematical representation of your classifier.
# - You can use the function `sigmoid()`. It is built-in (imported) in the notebook.
# - You can use the function `np.tanh()`. It is part of the numpy library.
# - The steps you have to implement are:
# 1. Retrieve each parameter from the dictionary "parameters" (which is the output of `initialize_parameters()`) by using `parameters[".."]`.
# 2. Implement Forward Propagation. Compute $Z^{[1]}, A^{[1]}, Z^{[2]}$ and $A^{[2]}$ (the vector of all your predictions on all the examples in the training set).
# - Values needed in the backpropagation are stored in "`cache`". The `cache` will be given as an input to the backpropagation function.
# In[31]:
# GRADED FUNCTION: forward_propagation
def forward_propagation(X, parameters):
"""
Argument:
X -- input data of size (n_x, m)
parameters -- python dictionary containing your parameters (output of initialization function)
Returns:
A2 -- The sigmoid output of the second activation
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
"""
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
### END CODE HERE ###
# Implement Forward Propagation to calculate A2 (probabilities)
### START CODE HERE ### (≈ 4 lines of code)
Z1 = np.dot(W1,X)+b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2,A1)+b2
A2 = sigmoid(Z2)
### END CODE HERE ###
assert(A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
# In[32]:
X_assess, parameters = forward_propagation_test_case()
A2, cache = forward_propagation(X_assess, parameters)
# Note: we use the mean here just to make sure that your output matches ours.
print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))
# **Expected Output**:
# <table style="width:55%">
# <tr>
# <td> -0.000499755777742 -0.000496963353232 0.000438187450959 0.500109546852 </td>
# </tr>
# </table>
# Now that you have computed $A^{[2]}$ (in the Python variable "`A2`"), which contains $a^{[2](i)}$ for every example, you can compute the cost function as follows:
#
# $$J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large{(} \small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large{)} \small\tag{13}$$
#
# **Exercise**: Implement `compute_cost()` to compute the value of the cost $J$.
#
# **Instructions**:
# - There are many ways to implement the cross-entropy loss. To help you, we give you how we would have implemented
# $- \sum\limits_{i=0}^{m} y^{(i)}\log(a^{[2](i)})$:
# ```python
# logprobs = np.multiply(np.log(A2),Y)
# cost = - np.sum(logprobs) # no need to use a for loop!
# ```
#
# (you can use either `np.multiply()` and then `np.sum()` or directly `np.dot()`).
#
# In[35]:
# GRADED FUNCTION: compute_cost
def compute_cost(A2, Y, parameters):
"""
Computes the cross-entropy cost given in equation (13)
Arguments:
A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
parameters -- python dictionary containing your parameters W1, b1, W2 and b2
Returns:
cost -- cross-entropy cost given equation (13)
"""
m = Y.shape[1] # number of example
# Compute the cross-entropy cost
### START CODE HERE ### (≈ 2 lines of code)
logprobs = Y*np.log(A2)+(1-Y)*(np.log(1-A2))
cost = -1/m * np.sum(logprobs)
### END CODE HERE ###
cost = np.squeeze(cost) # makes sure cost is the dimension we expect.
# E.g., turns [[17]] into 17
assert(isinstance(cost, float))
return cost
# In[36]:
A2, Y_assess, parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2, Y_assess, parameters)))
# **Expected Output**:
# <table style="width:20%">
# <tr>
# <td>**cost**</td>
# <td> 0.692919893776 </td>
# </tr>
#
# </table>
# Using the cache computed during forward propagation, you can now implement backward propagation.
#
# **Question**: Implement the function `backward_propagation()`.
#
# **Instructions**:
# Backpropagation is usually the hardest (most mathematical) part in deep learning. To help you, here again is the slide from the lecture on backpropagation. You'll want to use the six equations on the right of this slide, since you are building a vectorized implementation.
#
# <img src="images/grad_summary.png" style="width:600px;height:300px;">
#
# <!--
# $\frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } = \frac{1}{m} (a^{[2](i)} - y^{(i)})$
#
# $\frac{\partial \mathcal{J} }{ \partial W_2 } = \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } a^{[1] (i) T} $
#
# $\frac{\partial \mathcal{J} }{ \partial b_2 } = \sum_i{\frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)}}}$
#
# $\frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)} } = W_2^T \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } * ( 1 - a^{[1] (i) 2}) $
#
# $\frac{\partial \mathcal{J} }{ \partial W_1 } = \frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)} } X^T $
#
# $\frac{\partial \mathcal{J} _i }{ \partial b_1 } = \sum_i{\frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)}}}$
#
# - Note that $*$ denotes elementwise multiplication.
# - The notation you will use is common in deep learning coding:
# - dW1 = $\frac{\partial \mathcal{J} }{ \partial W_1 }$
# - db1 = $\frac{\partial \mathcal{J} }{ \partial b_1 }$
# - dW2 = $\frac{\partial \mathcal{J} }{ \partial W_2 }$
# - db2 = $\frac{\partial \mathcal{J} }{ \partial b_2 }$
#
# !-->
#
# - Tips:
# - To compute dZ1 you'll need to compute $g^{[1]'}(Z^{[1]})$. Since $g^{[1]}(.)$ is the tanh activation function, if $a = g^{[1]}(z)$ then $g^{[1]'}(z) = 1-a^2$. So you can compute
# $g^{[1]'}(Z^{[1]})$ using `(1 - np.power(A1, 2))`.
# In[66]:
# GRADED FUNCTION: backward_propagation
def backward_propagation(parameters, cache, X, Y):
"""
Implement the backward propagation using the instructions above.
Arguments:
parameters -- python dictionary containing our parameters
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
X -- input data of shape (2, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
Returns:
grads -- python dictionary containing your gradients with respect to different parameters
"""
m = X.shape[1]
# First, retrieve W1 and W2 from the dictionary "parameters".
### START CODE HERE ### (≈ 2 lines of code)
W1 = parameters["W1"]
W2 = parameters["W2"]
### END CODE HERE ###
# Retrieve also A1 and A2 from dictionary "cache".
### START CODE HERE ### (≈ 2 lines of code)
A1 = cache["A1"]
A2 = cache["A2"]
### END CODE HERE ###
# Backward propagation: calculate dW1, db1, dW2, db2.
### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
dZ2= A2-Y
dW2 = 1/m *np.dot(dZ2,A1.T)
db2 = 1/m*np.sum(dZ2, axis =1, keepdims = True)
dZ1 = np.dot(W2.T,dZ2)*(1 - np.power(A1, 2))
dW1 = 1/m*np.dot(dZ1,X.T)
db1 = 1/m*np.sum(dZ1, axis =1, keepdims = True)
### END CODE HERE ###
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
# In[67]:
parameters, cache, X_assess, Y_assess = backward_propagation_test_case()
grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))
# **Expected output**:
#
#
#
# <table style="width:80%">
# <tr>
# <td>**dW1**</td>
# <td> [[ 0.01018708 -0.00708701]
# [ 0.00873447 -0.0060768 ]
# [-0.00530847 0.00369379]
# [-0.02206365 0.01535126]] </td>
# </tr>
#
# <tr>
# <td>**db1**</td>
# <td> [[-0.00069728]
# [-0.00060606]
# [ 0.000364 ]
# [ 0.00151207]] </td>
# </tr>
#
# <tr>
# <td>**dW2**</td>
# <td> [[ 0.00363613 0.03153604 0.01162914 -0.01318316]] </td>
# </tr>
#
#
# <tr>
# <td>**db2**</td>
# <td> [[ 0.06589489]] </td>
# </tr>
#
# </table>
# **Question**: Implement the update rule. Use gradient descent. You have to use (dW1, db1, dW2, db2) in order to update (W1, b1, W2, b2).
#
# **General gradient descent rule**: $ \theta = \theta - \alpha \frac{\partial J }{ \partial \theta }$ where $\alpha$ is the learning rate and $\theta$ represents a parameter.
#
# **Illustration**: The gradient descent algorithm with a good learning rate (converging) and a bad learning rate (diverging). Images courtesy of Adam Harley.
#
# <img src="images/sgd.gif" style="width:400;height:400;"> <img src="images/sgd_bad.gif" style="width:400;height:400;">
#
#
# In[70]:
# GRADED FUNCTION: update_parameters
def update_parameters(parameters, grads, learning_rate = 1.2):
"""
Updates parameters using the gradient descent update rule given above
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients
Returns:
parameters -- python dictionary containing your updated parameters
"""
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
### END CODE HERE ###
# Retrieve each gradient from the dictionary "grads"
### START CODE HERE ### (≈ 4 lines of code)
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
## END CODE HERE ###
# Update rule for each parameter
### START CODE HERE ### (≈ 4 lines of code)
W1 = W1 - learning_rate*dW1
b1 = b1 - learning_rate*db1
W2 = W2 - learning_rate*dW2
b2 = b2 - learning_rate*db2
### END CODE HERE ###
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
# In[71]:
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
# **Expected Output**:
#
#
# <table style="width:80%">
# <tr>
# <td>**W1**</td>
# <td> [[-0.00643025 0.01936718]
# [-0.02410458 0.03978052]
# [-0.01653973 -0.02096177]
# [ 0.01046864 -0.05990141]]</td>
# </tr>
#
# <tr>
# <td>**b1**</td>
# <td> [[ -1.02420756e-06]
# [ 1.27373948e-05]
# [ 8.32996807e-07]
# [ -3.20136836e-06]]</td>
# </tr>
#
# <tr>
# <td>**W2**</td>
# <td> [[-0.01041081 -0.04463285 0.01758031 0.04747113]] </td>
# </tr>
#
#
# <tr>
# <td>**b2**</td>
# <td> [[ 0.00010457]] </td>
# </tr>
#
# </table>
# ### 4.4 - Integrate parts 4.1, 4.2 and 4.3 in nn_model() ####
#
# **Question**: Build your neural network model in `nn_model()`.
#
# **Instructions**: The neural network model has to use the previous functions in the right order.
# In[77]:
# GRADED FUNCTION: nn_model
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
"""
Arguments:
X -- dataset of shape (2, number of examples)
Y -- labels of shape (1, number of examples)
n_h -- size of the hidden layer
num_iterations -- Number of iterations in gradient descent loop
print_cost -- if True, print the cost every 1000 iterations
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
### START CODE HERE ### (≈ 5 lines of code)
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
### END CODE HERE ###
# Loop (gradient descent)
for i in range(0, num_iterations):
### START CODE HERE ### (≈ 4 lines of code)
# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
A2, cache = forward_propagation(X, parameters)
# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
cost = compute_cost(A2, Y, parameters)
# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
grads = backward_propagation(parameters, cache, X, Y)
# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
parameters = update_parameters(parameters, grads)
### END CODE HERE ###
# Print the cost every 1000 iterations
if print_cost and i % 1000 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
return parameters
# In[78]:
X_assess, Y_assess = nn_model_test_case()
parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
# **Expected Output**:
#
# <table style="width:90%">
# <tr>
# <td>**W1**</td>
# <td> [[-4.18494056 5.33220609]
# [-7.52989382 1.24306181]
# [-4.1929459 5.32632331]
# [ 7.52983719 -1.24309422]]</td>
# </tr>
#
# <tr>
# <td>**b1**</td>
# <td> [[ 2.32926819]
# [ 3.79458998]
# [ 2.33002577]
# [-3.79468846]]</td>
# </tr>
#
# <tr>
# <td>**W2**</td>
# <td> [[-6033.83672146 -6008.12980822 -6033.10095287 6008.06637269]] </td>
# </tr>
#
#
# <tr>
# <td>**b2**</td>
# <td> [[-52.66607724]] </td>
# </tr>
#
# </table>
# ### 4.5 Predictions
#
# **Question**: Use your model to predict by building predict().
# Use forward propagation to predict results.
#
# **Reminder**: predictions = $y_{prediction} = \mathbb 1 \text{{activation > 0.5}} = \begin{cases}
# 1 & \text{if}\ activation > 0.5 \\
# 0 & \text{otherwise}
# \end{cases}$
#
# As an example, if you would like to set the entries of a matrix X to 0 and 1 based on a threshold you would do: ```X_new = (X > threshold)```
# In[79]:
# GRADED FUNCTION: predict
def predict(parameters, X):
"""
Using the learned parameters, predicts a class for each example in X
Arguments:
parameters -- python dictionary containing your parameters
X -- input data of size (n_x, m)
Returns
predictions -- vector of predictions of our model (red: 0 / blue: 1)
"""
# Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
### START CODE HERE ### (≈ 2 lines of code)
A2, cache = forward_propagation(X, parameters)
predictions = (A2>0.5)
### END CODE HERE ###
return predictions
# In[80]:
parameters, X_assess = predict_test_case()
predictions = predict(parameters, X_assess)
print("predictions mean = " + str(np.mean(predictions)))
# **Expected Output**:
#
#
# <table style="width:40%">
# <tr>
# <td>**predictions mean**</td>
# <td> 0.666666666667 </td>
# </tr>
#
# </table>
# It is time to run the model and see how it performs on a planar dataset. Run the following code to test your model with a single hidden layer of $n_h$ hidden units.
# In[81]:
# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
# **Expected Output**:
#
# <table style="width:40%">
# <tr>
# <td>**Cost after iteration 9000**</td>
# <td> 0.218607 </td>
# </tr>
#
# </table>
#
# In[82]:
# Print accuracy
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
# **Expected Output**:
#
# <table style="width:15%">
# <tr>
# <td>**Accuracy**</td>
# <td> 90% </td>
# </tr>
# </table>
# Accuracy is really high compared to Logistic Regression. The model has learnt the leaf patterns of the flower! Neural networks are able to learn even highly non-linear decision boundaries, unlike logistic regression.
#
# Now, let's try out several hidden layer sizes.
# ### 4.6 - Tuning hidden layer size (optional/ungraded exercise) ###
#
# Run the following code. It may take 1-2 minutes. You will observe different behaviors of the model for various hidden layer sizes.
# In[84]:
# This may take about 2 minutes to run
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i+1)
plt.title('Hidden Layer of size %d' % n_h)
parameters = nn_model(X, Y, n_h, num_iterations = 5000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
predictions = predict(parameters, X)
accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
# **Interpretation**:
# - The larger models (with more hidden units) are able to fit the training set better, until eventually the largest models overfit the data.
# - The best hidden layer size seems to be around n_h = 5. Indeed, a value around here seems to fits the data well without also incurring noticable overfitting.
# - You will also learn later about regularization, which lets you use very large models (such as n_h = 50) without much overfitting.
# **Optional questions**:
#
# **Note**: Remember to submit the assignment but clicking the blue "Submit Assignment" button at the upper-right.
#
# Some optional/ungraded questions that you can explore if you wish:
# - What happens when you change the tanh activation for a sigmoid activation or a ReLU activation?
# - Play with the learning_rate. What happens?
# - What if we change the dataset? (See part 5 below!)
# <font color='blue'>
# **You've learnt to:**
# - Build a complete neural network with a hidden layer
# - Make a good use of a non-linear unit
# - Implemented forward propagation and backpropagation, and trained a neural network
# - See the impact of varying the hidden layer size, including overfitting.
# Nice work!
# ## 5) Performance on other datasets
# If you want, you can rerun the whole notebook (minus the dataset part) for each of the following datasets.
# In[85]:
# Datasets
noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()
datasets = {"noisy_circles": noisy_circles,
"noisy_moons": noisy_moons,
"blobs": blobs,
"gaussian_quantiles": gaussian_quantiles}
### START CODE HERE ### (choose your dataset)
dataset = "noisy_moons"
### END CODE HERE ###
X, Y = datasets[dataset]
X, Y = X.T, Y.reshape(1, Y.shape[0])
# make blobs binary
if dataset == "blobs":
Y = Y%2
# Visualize the data
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
# Congrats on finishing this Programming Assignment!
#
# Reference:
# - http://scs.ryerson.ca/~aharley/neural-networks/
# - http://cs231n.github.io/neural-networks-case-study/