-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSeparationAlgebraProduct.v
124 lines (110 loc) · 3.18 KB
/
SeparationAlgebraProduct.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
Add LoadPath "C:\td202\GitHub\coq\views".
Require Import SeparationAlgebras.
Require Import SetoidClass.
Require Import Tactics.
Require Import Setof.
Instance defined_morphism {A} `{Setoid A} :
Proper (equiv ==> equiv) defined.
destruct x; destruct y.
firstorder.
Qed.
Section SeparationAlgebraProduct.
Context A
{A_setoid : Setoid A}
(aop :partial_op A)
{A_SA : SepAlg aop}.
Context B
{B_setoid : Setoid B}
(bop :partial_op B)
{B_SA : SepAlg bop}.
Program Instance prod_setoid : Setoid (A*B) :=
{| equiv := fun c c' =>
let (a, b) := c in
let (a', b') := c' in
a == a' /\ b == b' |}.
Obligation 1.
split; cbv.
destruct x; firstorder.
destruct x; destruct y; firstorder.
destruct x; destruct y; destruct z.
firstorder; rewr auto.
Qed.
Program Definition prod_SA_unit : @Setof (A*B) _ :=
{| elem := (fun c =>
let (a,b) := c in sa_unit a /\ sa_unit b) |}.
Obligation 1.
destruct x; destruct y.
firstorder; rewr trivial.
Qed.
Definition prod_sepop : partial_op (A*B) :=
fun c c' =>
let (a, b) := c in
let (a', b') := c' in
let a'' := aop a a' in let b'' := bop b b' in
{|
defined := defined a'' /\ defined b'';
val := (val a'', val b'')
|}.
Instance prod_sepop_morphism : Proper
(equiv ==> equiv ==> equiv) prod_sepop.
repeat intro.
unfold prod_sepop.
repeat match goal with
| c : prod A B |- _ => destruct c
| P : (_,_) == (_,_) |- _ => destruct P
end.
destruct (sa_morph _ _ H _ _ H0).
destruct (sa_morph _ _ H2 _ _ H1).
split; simpl; intuition; try rewr auto.
Qed.
Lemma prod_sepop_comm : forall c c',
prod_sepop c c' == prod_sepop c' c.
intuition.
generalize (sa_comm a a0).
generalize (sa_comm b b0).
split; simpl.
rewr auto.
destruct H.
destruct H0.
intuition.
Qed.
Lemma prod_sepop_assoc : forall c c' c'',
lift_op prod_sepop (prod_sepop c c') (lift_val c'')
== lift_op prod_sepop (lift_val c) (prod_sepop c' c'').
intuition.
generalize (sa_assoc a a0 a1).
generalize (sa_assoc b b0 b1).
intros H H0; split;
destruct H; destruct H0;
unfold lift_op in *; simpl in *;
intuition.
Qed.
Lemma prod_sepop_unit_exists : forall c, exists i,
elem prod_SA_unit i /\ prod_sepop i c == lift_val c.
intuition.
destruct (sa_unit_exists a).
destruct (sa_unit_exists b).
exists (x,x0).
simpl; firstorder.
Qed.
Lemma prod_sepop_unit_min : forall c c' i,
elem prod_SA_unit i ->
(prod_sepop i c) == lift_val c' ->
c == c'.
intuition.
destruct i as [ia ib].
generalize (sa_unit_min b b0 ib).
generalize (sa_unit_min a a0 ia).
intros.
simpl in *; unfold prod_prop_equiv in *; simpl in *.
intuition.
Qed.
Instance prod_SA : SepAlg prod_sepop :=
{| sa_morph := prod_sepop_morphism;
sa_comm := prod_sepop_comm;
sa_assoc := prod_sepop_assoc;
sa_unit := prod_SA_unit;
sa_unit_exists := prod_sepop_unit_exists;
sa_unit_min := prod_sepop_unit_min
|}.
End SeparationAlgebraProduct.