-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodetest.py
551 lines (472 loc) · 20.4 KB
/
codetest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import numpy as np
import csv
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from matplotlib import pyplot
#REALLY SHITTY FILE NAMES, IM SORRY D:
filepath = 'C:/Users/Lawrence/Documents/GM/vehpub.csv'
data = np.genfromtxt(filepath, delimiter=',', skip_header=1)
filepath2 = 'C:/Users/Lawrence/Documents/GM/hhpub.csv'
data2 = np.genfromtxt(filepath2, delimiter=',', skip_header=1)
#Below, i am generating a dictionary so we have direct access to each HOUSEHOLD so we can separate data little more
#for hhpub.csv
hhweight = {row[0]: row[1] for row in data2} #creates a dictionary of the household weight in form of id:weight
numadlt = {row[0]: row[4] for row in data2} #creates a dictionary of the number of adults in form of id:number of adults
homeown = {row[0]: row[5] for row in data2} #creates a dictionary of the home ownership in form of id:home ownership
hometype = {row[0]: row[6] for row in data2} #creates a dictionary of the home type in form of id:home type
rail = {row[0]: row[7] for row in data2} #creates a dictionary of the rail in form of id:rail
census_d = {row[0]: row[8] for row in data2} #creates a dictionary of the census division in form of id:census division
census_r = {row[0]: row[9] for row in data2} #creates a dictionary of the census region in form of id:census region
hh_hisp = {row[0]: row[10] for row in data2} #creates a dictionary of the household hispanic in form of id:household hispanic
drvrcnt = {row[0]: row[11] for row in data2} #creates a dictionary of the driver count in form of id:driver count
cnttdhh = {row[0]: row[12] for row in data2} #creates a dictionary of the count of the household in form of id:count of the household
cdivmsar = {row[0]: row[13] for row in data2} #creates a dictionary of the census division in form of id:census division
flag100 = {row[0]: row[14] for row in data2} #creates a dictionary of the flag100 in form of id:flag100
hhinc = {row[0]: row[16] for row in data2} #creates a dictionary of the household income in form of id:income
hhrace = {row[0]: row[17] for row in data2} #creates a dictionary
hhsize = {row[0]: row[18] for row in data2} #creates a dictionary
hhvehcnt = {row[0]: row[19] for row in data2} #creates a dictionary
hhrelatd = {row[0]: row[20] for row in data2} #creates a dictionary
lif_cyc = {row[0]: row[21] for row in data2} #creates a dictionary
msasize = {row[0]: row[23] for row in data2} #creates a dictionary
travday = {row[0]: row[24] for row in data2} #creates a dictionary
urban = {row[0]: row[25] for row in data2} #creates a dictionary
urbansize = {row[0]: row[26] for row in data2} #creates a dictionary
urbrur = {row[0]: row[27] for row in data2} #creates a dictionary
ppt517 = {row[0]: row[28] for row in data2} #creates a dictionary
youngchild = {row[0]: row[29] for row in data2} #creates a dictionary
resp_cnt = {row[0]: row[30] for row in data2} #creates a dictionary
urbrur_2010 = {row[0]: row[31] for row in data2} #creates a dictionary
wrkcount = {row[0]: row[33] for row in data2}
#NOTE: MAKE SURE THAT THE HOUSE ID IS UNIQUE OR THERES GONNA BE BIG BAD PROBLEMS
#getting all the house ids with evs (id = 5)
Houses_with_EVS = []
Houses_with_Hybrids = []
Houses_with_PlugInHybrids = []
#getting a list of all houses
typeofcar = [0]*99
for i in range(data.shape[0]):
if data[i, 6] == 5:
Houses_with_EVS.append(data[i, 0]) #gives id of houses with evs
typeofcar[int(data[i, 3])] += 1
elif data[i, 6] == 6:
Houses_with_Hybrids.append(data[i, 0])
elif data[i, 6] == 4:
Houses_with_PlugInHybrids.append(data[i, 0])
#turning it into np array so can run numpy commands on it
Houses_with_EVS = np.array(Houses_with_EVS)
unique_houses_with_evs = np.unique(Houses_with_EVS) #gets rid of duplicates
for i in range(len(typeofcar)):
if typeofcar[i] != 0:
print(i+1)
#print(unique_houses_with_evs)
#ford, chevrolet, other dom e.g tesla, volkswagen, audi,bmw, nissan/datsun, honda, hyundai, kia, other make
#no, yes, no, no, no volkswagen, no audi, no
totalveh = 0
numvehgiveninc = [0,0,0,0,0,0,0,0,0,0,0] #income has 11 categories
numvehgiveninc1 = [0,0,0,0,0,0,0,0,0,0,0] #income has 11 categories
numvehgiveninc2 = [0,0,0,0,0,0,0,0,0,0,0] #income has 11 categories
#note: total veh = sum(num of vehicles per hh x hh weight)
totalrural = 0
totalweight = 0
totalurban = 0
homeown1 = [0] * 4
homeown2 = [0] * 4
homeown3 = [0] * 4
hometype1 = [0] * 4
hometype2 = [0] * 4
hometype3 = [0] * 4
census_d1= [0] * 9
census_d2 = [0] * 9
census_d3 = [0] * 9
census_r1 = [0] * 4
census_r2 = [0] * 4
census_r3 = [0] * 4
hh_hisp1 = [0] * 4
hh_hisp2 = [0] * 4
hh_hisp3 = [0] * 4
drvrcnt1 = [0] * 9
drvrcnt2 = [0] * 9
drvrcnt3 = [0] * 9
cnttdhh1 = [0] * 45
cnttdhh2 = [0] * 45
cnttdhh3 = [0] * 45
cdivmsar1 = [0] * 95
cdivmsar2 = [0] * 95
cdivmsar3 = [0] * 95
flag1001 = [0] * 9
flag1002 = [0] * 9
flag1003 = [0] * 9
hhinc1 = [0] * 11
hhinc2 = [0] * 11
hhinc3 = [0] * 11
hhrace1 = [0] * 99
hhrace2 = [0] * 99
hhrace3 = [0] * 99
hhsize1 = [0] * 9
hhsize2 = [0] * 9
hhsize3 = [0] * 9
hhvehcnt1 = [0] * 9
hhvehcnt2 = [0] * 9
hhvehcnt3 = [0] * 9
hhrelatd1 = [0] * 9
hhrelatd2 = [0] * 9
hhrelatd3 = [0] * 9
lif_cyc1 = [0] * 10
lif_cyc2 = [0] * 10
lif_cyc3 = [0] * 10
msasize1 = [0] * 9
msasize2 = [0] * 9
msasize3 = [0] * 9
travday1 = [0] * 9
travday2 = [0] * 9
travday3 = [0] * 9
urban1 = [0] * 9
urban2 = [0] * 9
urban3 = [0] * 9
urbansize1 = [0] * 9
urbansize2 = [0] * 9
urbansize3 = [0] * 9
urbrur1 = [0] * 9
urbrur2 = [0] * 9
urbrur3 = [0] * 9
ppt5171 = [0] * 9
ppt5172 = [0] * 9
ppt5173 = [0] * 9
youngchild1 = [0] * 9
youngchild2 = [0] * 9
youngchild3 = [0] * 9
resp_cnt1 = [0] * 9
resp_cnt2 = [0] * 9
resp_cnt3 = [0] * 9
urbrur_20101 = [0] * 9
urbrur_20102 = [0] * 9
urbrur_20103 = [0] * 9
wrkcount1 = [0] * 9
wrkcount2 = [0] * 9
wrkcount3 = [0] * 9
for i in Houses_with_PlugInHybrids:
numvehgiveninc1[int(hhinc[i])-1] += hhweight[i] #split it based on income
homeown2[int(homeown[i])-1] += hhweight[i]
hometype2[int(hometype[i])-1] += hhweight[i]
census_d2[int(census_d[i])-1] += hhweight[i]
census_r2[int(census_r[i])-1] += hhweight[i]
hh_hisp2[int(hh_hisp[i])-1] += hhweight[i]
drvrcnt2[int(drvrcnt[i])-1] += hhweight[i]
cnttdhh2[int(cnttdhh[i])-1] += hhweight[i]
cdivmsar2[int(cdivmsar[i])-1] += hhweight[i]
flag1002[int(flag100[i])-1] += hhweight[i]
hhrace2[int(hhrace[i])-1] += hhweight[i]
hhsize2[int(hhsize[i])-1] += hhweight[i]
hhvehcnt2[int(hhvehcnt[i])-1] += hhweight[i]
hhrelatd2[int(hhrelatd[i])-1] += hhweight[i]
lif_cyc2[int(lif_cyc[i])-1] += hhweight[i]
msasize2[int(msasize[i])-1] += hhweight[i]
travday2[int(travday[i])-1] += hhweight[i]
urban2[int(urban[i])-1] += hhweight[i]
urbansize2[int(urbansize[i])-1] += hhweight[i]
urbrur2[int(urbrur[i])-1] += hhweight[i]
ppt5172[int(ppt517[i])-1] += hhweight[i]
youngchild2[int(youngchild[i])-1] += hhweight[i]
resp_cnt2[int(resp_cnt[i])-1] += hhweight[i]
urbrur_20102[int(urbrur_2010[i])-1] += hhweight[i]
wrkcount2[int(wrkcount[i])-1] += hhweight[i]
for i in Houses_with_Hybrids:
numvehgiveninc2[int(hhinc[i])-1] += hhweight[i] #split it based on income
homeown3[int(homeown[i])-1] += hhweight[i]
hometype3[int(hometype[i])-1] += hhweight[i]
census_d3[int(census_d[i])-1] += hhweight[i]
census_r3[int(census_r[i])-1] += hhweight[i]
hh_hisp3[int(hh_hisp[i])-1] += hhweight[i]
drvrcnt3[int(drvrcnt[i])-1] += hhweight[i]
cnttdhh3[int(cnttdhh[i])-1] += hhweight[i]
cdivmsar3[int(cdivmsar[i])-1] += hhweight[i]
flag1003[int(flag100[i])-1] += hhweight[i]
hhrace3[int(hhrace[i])-1] += hhweight[i]
hhsize3[int(hhsize[i])-1] += hhweight[i]
hhvehcnt3[int(hhvehcnt[i])-1] += hhweight[i]
hhrelatd3[int(hhrelatd[i])-1] += hhweight[i]
lif_cyc3[int(lif_cyc[i])-1] += hhweight[i]
msasize3[int(msasize[i])-1] += hhweight[i]
travday3[int(travday[i])-1] += hhweight[i]
urban3[int(urban[i])-1] += hhweight[i]
urbansize3[int(urbansize[i])-1] += hhweight[i]
urbrur3[int(urbrur[i])-1] += hhweight[i]
ppt5173[int(ppt517[i])-1] += hhweight[i]
youngchild3[int(youngchild[i])-1] += hhweight[i]
resp_cnt3[int(resp_cnt[i])-1] += hhweight[i]
urbrur_20103[int(urbrur_2010[i])-1] += hhweight[i]
wrkcount3[int(wrkcount[i])-1] += hhweight[i]
"""
print("homeown: ", sum(homeown1))
print("hometype: ", sum(hometype1))
print("census_d: ", sum(census_d1))
print("census_r: ", sum(census_r1))
print("hh_hisp: ", sum(hh_hisp1))
print("drvrcnt: ", sum(drvrcnt1))
print("cnttdhh: ", sum(cnttdhh1))
print("cdivmsar: ", sum(cdivmsar1))
print("flag100: ", sum(flag1001))
print("hhinc: ", sum(numvehgiveninc))
print("hhrace: ", sum(hhrace1))
print("hhsize: ", sum(hhsize1))
print("hhvehcnt: ", sum(hhvehcnt1))
print("hhrelatd: ", sum(hhrelatd1))
print("lif_cyc: ", sum(lif_cyc1))
print("msasize: ", sum(msasize1))
print("travday: ", sum(travday1))
print("urban: ", sum(urban1))
print("urbansize: ", sum(urbansize1))
print("urbrur: ", sum(urbrur1))
print("ppt517: ", sum(ppt5171))
print("youngchild: ", sum(youngchild1))
print("resp_cnt: ", sum(resp_cnt1))
print("urbrur_2010: ", sum(urbrur_20101))
print("wrkcount: ", sum(wrkcount1))
"""
for i in Houses_with_EVS:
numvehgiveninc[int(hhinc[i])-1] += hhweight[i] #split it based on income
homeown1[int(homeown[i])-1] += hhweight[i]
hometype1[int(hometype[i])-1] += hhweight[i]
census_d1[int(census_d[i])-1] += hhweight[i]
census_r1[int(census_r[i])-1] += hhweight[i]
hh_hisp1[int(hh_hisp[i])-1] += hhweight[i]
drvrcnt1[int(drvrcnt[i])-1] += hhweight[i]
cnttdhh1[int(cnttdhh[i])-1] += hhweight[i]
cdivmsar1[int(cdivmsar[i])-1] += hhweight[i]
flag1001[int(flag100[i])-1] += hhweight[i]
hhrace1[int(hhrace[i])-1] += hhweight[i]
hhsize1[int(hhsize[i])-1] += hhweight[i]
hhvehcnt1[int(hhvehcnt[i])-1] += hhweight[i]
hhrelatd1[int(hhrelatd[i])-1] += hhweight[i]
lif_cyc1[int(lif_cyc[i])-1] += hhweight[i]
msasize1[int(msasize[i])-1] += hhweight[i]
travday1[int(travday[i])-1] += hhweight[i]
urban1[int(urban[i])-1] += hhweight[i]
urbansize1[int(urbansize[i])-1] += hhweight[i]
urbrur1[int(urbrur[i])-1] += hhweight[i]
ppt5171[int(ppt517[i])-1] += hhweight[i]
youngchild1[int(youngchild[i])-1] += hhweight[i]
resp_cnt1[int(resp_cnt[i])-1] += hhweight[i]
urbrur_20101[int(urbrur_2010[i])-1] += hhweight[i]
wrkcount1[int(wrkcount[i])-1] += hhweight[i]
widths = 0.1
pyplot.figure(0)
x = np.arange(1, len(homeown1)+1)
pyplot.bar(x-widths, homeown1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, homeown2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, homeown3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('homeown')
pyplot.figure(1)
x = np.arange(1, len(hometype1)+1)
pyplot.bar(x-widths, hometype1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, hometype2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, hometype3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('hometype')
pyplot.figure(2)
x = np.arange(1, len(census_d1)+1)
pyplot.bar(x-widths, census_d1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, census_d2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, census_d3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('census_d')
pyplot.figure(3)
x = np.arange(1, len(census_r1)+1)
pyplot.bar(x-widths, census_r1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, census_r2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, census_r3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('census_r')
pyplot.figure(4)
x = np.arange(1, len(hh_hisp1)+1)
pyplot.bar(x-widths, hh_hisp1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, hh_hisp2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, hh_hisp3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('hh_hisp')
pyplot.figure(5)
x = np.arange(1, len(drvrcnt1)+1)
pyplot.bar(x-widths, drvrcnt1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, drvrcnt2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, drvrcnt3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('drvrcnt')
pyplot.figure(6)
x = np.arange(1, len(cnttdhh1)+1)
pyplot.bar(x-widths, cnttdhh1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, cnttdhh2, label = 'non-plug plug in hybrids', color = 'b',width=0.1)
pyplot.legend()
pyplot.title('cnttdhh')
pyplot.figure(7)
x = np.arange(1, len(cdivmsar1)+1)
pyplot.bar(x-widths, cdivmsar1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, cdivmsar2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, cdivmsar3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('cdivmsar')
pyplot.figure(8)
x = np.arange(1, len(flag1001)+1)
pyplot.bar(x-widths, flag1001, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, flag1002, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, flag1003, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('flag100')
pyplot.figure(9)
x = np.arange(1, len(numvehgiveninc)+1)
pyplot.bar(x-widths, numvehgiveninc, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, numvehgiveninc1, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, numvehgiveninc2, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('hhinc')
pyplot.figure(10)
x = np.arange(1, len(hhrace1)+1)
pyplot.bar(x-widths, hhrace1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, hhrace2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, hhrace3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('hhrace')
pyplot.figure(11)
x = np.arange(1, len(hhsize1)+1)
pyplot.bar(x-widths, hhsize1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, hhsize2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, hhsize3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('hhsize')
pyplot.figure(12)
x = np.arange(1, len(hhvehcnt1)+1)
pyplot.bar(x-widths, hhvehcnt1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, hhvehcnt2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, hhvehcnt3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('hhvehcnt')
pyplot.figure(13)
x = np.arange(1, len(hhrelatd1)+1)
pyplot.bar(x-widths, hhrelatd1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, hhrelatd2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, hhrelatd3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('hhrelatd')
pyplot.figure(14)
x = np.arange(1, len(lif_cyc1)+1)
pyplot.bar(x-widths, lif_cyc1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, lif_cyc2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, lif_cyc3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('lif_cyc')
pyplot.figure(15)
x = np.arange(1, len(msasize1)+1)
pyplot.bar(x-widths, msasize1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, msasize2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, msasize3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('msasize')
pyplot.figure(16)
x = np.arange(1, len(travday1)+1)
pyplot.bar(x-widths, travday1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, travday2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, travday3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('travday')
pyplot.figure(17)
x = np.arange(1, len(urban1)+1)
pyplot.bar(x-widths, urban1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, urban2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, urban3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('urban')
pyplot.figure(18)
x = np.arange(1, len(urbansize1)+1)
pyplot.bar(x-widths, urbansize1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, urbansize2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, urbansize3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('urbansize')
pyplot.figure(19)
x = np.arange(1, len(urbrur1)+1)
pyplot.bar(x-widths, urbrur1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, urbrur2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, urbrur3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('urbrur')
pyplot.figure(20)
x = np.arange(1, len(ppt5171)+1)
pyplot.bar(x-widths, ppt5171, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, ppt5172, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, ppt5173, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('ppt517')
pyplot.figure(21)
x = np.arange(1, len(youngchild1)+1)
pyplot.bar(x-widths, youngchild1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, youngchild2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, youngchild3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('youngchild')
pyplot.figure(22)
x = np.arange(1, len(resp_cnt1)+1)
pyplot.bar(x-widths, resp_cnt1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, resp_cnt2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, resp_cnt3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('resp_cnt')
pyplot.figure(23)
x = np.arange(1, len(urbrur_20101)+1)
pyplot.bar(x-widths, urbrur_20101, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, urbrur_20102, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, urbrur_20103, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('urbrur_2010')
pyplot.figure(24)
x = np.arange(1, len(wrkcount1)+1)
pyplot.bar(x-widths, wrkcount1, label = 'evs', color = 'r',width=0.1)
pyplot.bar(x, wrkcount2, label = 'plug in hybrids', color = 'b',width=0.1)
pyplot.bar(x+widths, wrkcount3, label = 'non-plug hybrids', color = 'g',width=0.1)
pyplot.legend()
pyplot.title('wrkcount')
pyplot.show()
"""
for i in rural:
totalrural += hhweight[i]
for i in urban:
totalurban += hhweight[i]
print("total rural: ", totalrural)
print("total urban: ", totalurban)
print(totalurban + totalrural)
print("total electric vehicles: ", int(totalveh))
print("number of electric vehicles given income: ", sum(numvehgiveninc))
print(unique_houses_with_evs)
#homeown, hometype, census_d, census_r, hh_hisp, drvrcnt, cnttdhh, cdivmsar, flag100, hhinc, hhrace, hhsize, hhvehcnt, hhrelatd, lif_cyc, msasize, travday, urban, urbansize, urbrur, ppt517, youngchild, resp_cnt, urbrur_2010, wrkcount
with open('evhouses4.csv', 'w+',newline = '') as f:
writer = csv.writer(f)
for i in data2:
if i[0] in unique_houses_with_evs:
for j in data:
if j[0] == i[0]:
i = np.append(i, j[3])
writer.writerow(i)
count = 0
with open('logreg.csv', 'w+' , newline = '') as f:
writer = csv.writer(f)
for i in data2:
#print(i[0])
if i[0] in unique_houses_with_evs:
count += 1
i = np.append([1], i[1:] )
else:
i = np.append([0], i[1:])
writer.writerow(i)
test = np.genfromtxt('evhouses4.csv', delimiter=',', skip_header=1)
#use first column as the label
from sklearn.preprocessing import StandardScaler
X = test[:, 1:]
y = test[:, 0]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(logreg.score(X_test, y_test)))
"""