forked from Wangzhangwei19/Adversarial-Multi-Distillation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
151 lines (127 loc) · 9 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import argparse
import sys
import yaml
from pathlib import Path
args = None
def parse_arguments():
parser = argparse.ArgumentParser(description='Candidate Selection for Clean Data set')
parser.add_argument('--db', type=int, required=False, help='single db test')
#kd
parser.add_argument('--t1_model', type=str, required=False, help='path name of teacher model',
default='/home/zjut/public/signal/wzw/KD/results/EXP_model/all-db-baseline/model/128_Vgg16_best_lr=0.001.pth')
parser.add_argument('--t2_model', type=str, required=False, help='path name of teacher model',
default='/home/zjut/public/signal/wzw/SignalAttack/DefenseEnhancedModels/PAT_ALLdB_model/128_Vgg16mmmoo1/model_best.pth.tar')
parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset')
parser.add_argument('--s_init', type=str, required=False, help='initial parameters of student model')
parser.add_argument('--kd_mode', type=str, required=False)
parser.add_argument('--lambda_kd1', type=float, default=1.0, help='trade-off parameter for kd loss')
parser.add_argument('--lambda_kd2', type=float, default=1.0, help='trade-off parameter for kd loss')
parser.add_argument('--lambda_kd3', type=float, default=1.0, help='trade-off parameter for kd loss')
parser.add_argument('--lambda_kd0', type=float, default=1.0, help='trade-off parameter for kd loss')
parser.add_argument('--s_name', type=str, default='Lenet', help='the model ')
parser.add_argument('--t1_name', type=str, default='Vgg16', help='the model ')
parser.add_argument('--t2_name', type=str, default='Vgg16', help='the model ')
parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate')
parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here')
parser.add_argument('--step', type=int, default=5, help='step num of PAT')
parser.add_argument('--T', type=float, default=4.0, help='temperature for ST')
# parser.add_argument('--step_size', type=float, default=0.03, help='evertime attack epsilon')
# parser.add_argument('--img_root', type=str, default='../data/cifar10', help='path name of image dataset')
# training hyper parameters
parser.add_argument('--print_freq', type=int, default=200, help='frequency of showing training results on console')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--cuda', type=int, default=1)
# others
parser.add_argument('--note', type=str, default='try', help='note for this run')
parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run')
# net and dataset choosen
parser.add_argument('--data_name', type=str, help='name of dataset',
default='128') # cifar10/cifar100 required=True,
parser.add_argument('--net_name', type=str, help='name of basenet',
default='r8conv1') # resnet20/resnet110 required=True,
# 干净样本 攻击 模型位置读取
parser.add_argument('--location', type=str, help='model attack test model load location')
#clean data selection
parser.add_argument('--model', type=str, default='r8conv1', help='the model ')
parser.add_argument('--name', type=str, default='r8conv1', help='the model ')
parser.add_argument('--dataset', type=str, default='128', help='the dataset ')
parser.add_argument('--seed', type=int, default=100, help='the default random seed for numpy and torch')
parser.add_argument('--gpu_index', type=str, default='0', help="gpu index to use")
parser.add_argument('--number', type=int, default=1000, help='the total number of candidate samples that will be randomly selected')
parser.add_argument('--batch-size', type=int, default=128, help='Batch size.')
#ATTACK METHOD
parser.add_argument('--modelDir', type=str, default='../RawModels/', help='the directory for the raw model')
parser.add_argument('--cleanDir', type=str, default='../CleanDatasets/', help='the directory for the clean dataset that will be attacked')
parser.add_argument('--adv_saver', type=str, default='../AdversarialExampleDatasets/',
help='the directory used to save the generated adversarial examples')
# FGSM
parser.add_argument('--epsilon', type=float, default=0.06, help='the epsilon value of FGSM')
# PGD
parser.add_argument('--epsilon_iter', type=float, default=0.03, help='the one iterative eps of PGD')
parser.add_argument('--num_steps', type=int, default=5, help='the number of perturbation steps')
parser.add_argument('--attack_batch_size', type=int, default=100, help='the default batch size for adversarial example generation')
#DEEPFOOL
parser.add_argument('--max_iters', type=int, default=15, help="the max iterations")#50
parser.add_argument('--overshoot', type=float, default=0.02, help='the overshoot')
#UAP
parser.add_argument('--fool_rate', type=float, default=1.0, help="the fooling rate")
parser.add_argument('--max_iter_universal', type=int, default=20, help="the maximum iterations for UAP")
parser.add_argument('--max_iter_deepfool', type=int, default=10, help='the maximum iterations for DeepFool')
#UMIFGSM
parser.add_argument('--decay_factor', type=float, default=1.0, help='decay factor')
#CW2
parser.add_argument('--confidence', type=float, default=0, help='the confidence of adversarial examples')
parser.add_argument('--initial_const', type=float, default=0.001,
help="the initial value of const c in the binary search.")
parser.add_argument('--learning_rate', type=float, default=0.02, help="the learning rate of gradient descent.")
parser.add_argument('--iteration', type=int, default=10000, help='maximum iteration')
parser.add_argument('--lower_bound', type=float, default=0.0,
help='the minimum pixel value for examples (default=0.0).')
parser.add_argument('--upper_bound', type=float, default=1.0,
help='the maximum pixel value for examples (default=1.0).')
parser.add_argument('--search_steps', type=int, default=10,
help="the binary search steps to find the optimal const.")
#JSMA
parser.add_argument('--theta', type=float, default=1.0, help='theta')
parser.add_argument('--gamma', type=float, default=0.1, help="gamma")
#AA
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--norm', type=str, default='Linf')
# parser.add_argument('--epsilon', type=float, default=0.15)
# parser.add_argument('--model', type=str, default='./model_test.pt')
parser.add_argument('--n_ex', type=int, default=19000)#26400
parser.add_argument('--individual', action='store_true')
parser.add_argument('--save_dir', type=str, default='./resultsaa')
# parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--log_path', type=str, default='./log_file.txt')
parser.add_argument('--version', type=str, default='standard')
parser.add_argument('--state-path', type=Path, default=None)
# parser.add_argument('--model', type=str, default="CNN1D")
# parser.add_argument('--gpu_index', type=str, default='1', help="gpu index to use")
# parser.add_argument('--dataset', type=str, default='128', help="gpu index to use")
# parser.add_argument('--name', type=str, default='r8conv1', help='the model ')
#some defense para
parser.add_argument('--eps', type=float, default=0.3, help='magnitude of random space')
parser.add_argument('--step_num', type=int, default=40, help='perform how many steps when PGD perturbation')
parser.add_argument('--step_size', type=float, default=0.03, help='the size of each perturbation')
# parameters for the NAT Defense
parser.add_argument('--adv_ratio', type=float, default=0.3,
help='the weight of adversarial example when adversarial training')
parser.add_argument('--clip_min', type=float, default=0.0, help='the min of epsilon allowed')
parser.add_argument('--clip_max', type=float, default=0.3, help='the max of epsilon allowed')
parser.add_argument('--eps_mu', type=int, default=0, help='the \mu value of normal distribution for epsilon')
parser.add_argument('--eps_sigma', type=int, default=50, help='the \sigma value of normal distribution for epsilon')
parser.add_argument('--lamba1', type=float, default=1.0, help='')
parser.add_argument('--lamba2', type=float, default=1.0, help='')
#DD
parser.add_argument('--initial', type=lambda x: (str(x).lower() == 'true'), default='True',
help='True if there exists a pre-trained initial model')
parser.add_argument('--temp', type=float, default=30.0, help='distillation temperature')
args = parser.parse_args()
return args
def run_args():
global args
if args is None:
args = parse_arguments()
run_args()