-
Notifications
You must be signed in to change notification settings - Fork 476
/
pico.js
221 lines (205 loc) · 6.21 KB
/
pico.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/* This library is released under the MIT license, see https://github.com/nenadmarkus/picojs */
const pico = {};
pico.unpack_cascade = function (bytes) {
//
const dview = new DataView(new ArrayBuffer(4));
/*
we skip the first 8 bytes of the cascade file
(cascade version number and some data used during the learning process)
*/
let p = 8;
/*
read the depth (size) of each tree first: a 32-bit signed integer
*/
dview.setUint8(0, bytes[p + 0]),
dview.setUint8(1, bytes[p + 1]),
dview.setUint8(2, bytes[p + 2]),
dview.setUint8(3, bytes[p + 3]);
const tdepth = dview.getInt32(0, true);
p = p + 4;
/*
next, read the number of trees in the cascade: another 32-bit signed integer
*/
dview.setUint8(0, bytes[p + 0]),
dview.setUint8(1, bytes[p + 1]),
dview.setUint8(2, bytes[p + 2]),
dview.setUint8(3, bytes[p + 3]);
const ntrees = dview.getInt32(0, true);
p = p + 4;
/*
read the actual trees and cascade thresholds
*/
const tcodes_ls = [];
const tpreds_ls = [];
const thresh_ls = [];
for (let t = 0; t < ntrees; ++t) {
// read the binary tests placed in internal tree nodes
Array.prototype.push.apply(tcodes_ls, [0, 0, 0, 0]);
Array.prototype.push.apply(
tcodes_ls,
bytes.slice(p, p + 4 * Math.pow(2, tdepth) - 4)
);
p = p + 4 * Math.pow(2, tdepth) - 4;
// read the prediction in the leaf nodes of the tree
for (let i = 0; i < Math.pow(2, tdepth); ++i) {
dview.setUint8(0, bytes[p + 0]),
dview.setUint8(1, bytes[p + 1]),
dview.setUint8(2, bytes[p + 2]),
dview.setUint8(3, bytes[p + 3]);
tpreds_ls.push(dview.getFloat32(0, true));
p = p + 4;
}
// read the threshold
dview.setUint8(0, bytes[p + 0]),
dview.setUint8(1, bytes[p + 1]),
dview.setUint8(2, bytes[p + 2]),
dview.setUint8(3, bytes[p + 3]);
thresh_ls.push(dview.getFloat32(0, true));
p = p + 4;
}
const tcodes = new Int8Array(tcodes_ls);
const tpreds = new Float32Array(tpreds_ls);
const thresh = new Float32Array(thresh_ls);
/*
construct the classification function from the read data
*/
function classify_region(r, c, s, pixels, ldim) {
r = 256 * r;
c = 256 * c;
let root = 0;
let o = 0.0;
const pow2tdepth = Math.pow(2, tdepth) >> 0; // '>>0' transforms this number to int
for (let i = 0; i < ntrees; ++i) {
let idx = 1;
for (let j = 0; j < tdepth; ++j)
// we use '>> 8' here to perform an integer division: this seems important for performance
idx =
2 * idx +
(pixels[
((r + tcodes[root + 4 * idx + 0] * s) >> 8) * ldim +
((c + tcodes[root + 4 * idx + 1] * s) >> 8)
] <=
pixels[
((r + tcodes[root + 4 * idx + 2] * s) >> 8) * ldim +
((c + tcodes[root + 4 * idx + 3] * s) >> 8)
]);
o = o + tpreds[pow2tdepth * i + idx - pow2tdepth];
if (o <= thresh[i]) return -1;
root += 4 * pow2tdepth;
}
return o - thresh[ntrees - 1];
}
/*
we're done
*/
return classify_region;
};
pico.run_cascade = function (image, classify_region, params) {
const pixels = image.pixels;
const nrows = image.nrows;
const ncols = image.ncols;
const ldim = image.ldim;
const shiftfactor = params.shiftfactor;
const minsize = params.minsize;
const maxsize = params.maxsize;
const scalefactor = params.scalefactor;
let scale = minsize;
const detections = [];
while (scale <= maxsize) {
const step = Math.max(shiftfactor * scale, 1) >> 0; // '>>0' transforms this number to int
const offset = (scale / 2 + 1) >> 0;
for (let r = offset; r <= nrows - offset; r += step)
for (let c = offset; c <= ncols - offset; c += step) {
const q = classify_region(r, c, scale, pixels, ldim);
if (q > 0.0) detections.push([r, c, scale, q]);
}
scale = scale * scalefactor;
}
return detections;
};
pico.cluster_detections = function (dets, iouthreshold) {
/*
sort detections by their score
*/
dets = dets.sort(function (a, b) {
return b[3] - a[3];
});
/*
this helper function calculates the intersection over union for two detections
*/
function calculate_iou(det1, det2) {
// unpack the position and size of each detection
const r1 = det1[0],
c1 = det1[1],
s1 = det1[2];
const r2 = det2[0],
c2 = det2[1],
s2 = det2[2];
// calculate detection overlap in each dimension
const overr = Math.max(
0,
Math.min(r1 + s1 / 2, r2 + s2 / 2) - Math.max(r1 - s1 / 2, r2 - s2 / 2)
);
const overc = Math.max(
0,
Math.min(c1 + s1 / 2, c2 + s2 / 2) - Math.max(c1 - s1 / 2, c2 - s2 / 2)
);
// calculate and return IoU
return (overr * overc) / (s1 * s1 + s2 * s2 - overr * overc);
}
/*
do clustering through non-maximum suppression
*/
const assignments = new Array(dets.length).fill(0);
const clusters = [];
for (let i = 0; i < dets.length; ++i) {
// is this detection assigned to a cluster?
if (assignments[i] == 0) {
// it is not:
// now we make a cluster out of it and see whether some other detections belong to it
let r = 0.0,
c = 0.0,
s = 0.0,
q = 0.0,
n = 0;
for (let j = i; j < dets.length; ++j)
if (calculate_iou(dets[i], dets[j]) > iouthreshold) {
assignments[j] = 1;
r = r + dets[j][0];
c = c + dets[j][1];
s = s + dets[j][2];
q = q + dets[j][3];
n = n + 1;
}
// make a cluster representative
clusters.push([r / n, c / n, s / n, q]);
}
}
return clusters;
};
pico.instantiate_detection_memory = function (size) {
/*
initialize a circular buffer of `size` elements
*/
let n = 0;
const memory = [];
for (let i = 0; i < size; ++i) memory.push([]);
/*
build a function that:
(1) inserts the current frame's detections into the buffer;
(2) merges all detections from the last `size` frames and returns them
*/
function update_memory(dets) {
memory[n] = dets;
n = (n + 1) % memory.length;
dets = [];
for (i = 0; i < memory.length; ++i) dets = dets.concat(memory[i]);
//
return dets;
}
/*
we're done
*/
return update_memory;
};
module.exports = pico;