forked from t3nsor/SPOJ
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbia.cpp
168 lines (168 loc) · 2.91 KB
/
bia.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// 2010-05-05
// TODO: Is it actually necessary to use the Lengauer-Tarjan algorithm for
// this problem?
#include <iostream>
#include <iterator>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <set>
using namespace std;
// Lengauer-Tarjan algorithm begins here
vector<vector<int> > succ; //1..n
vector<int> dom; //1..n
vector<int> parent,ancestor,child,vertex; //1..n
vector<int> label,semi,size; //0..n
vector<vector<int> > pred,bucket; //1..n
int n;
void dfs(int v){
semi[v]=++n;
vertex[n]=label[v]=v;
ancestor[v]=child[v]=0;
size[v]=1;
for (int i=0; i<succ[v].size(); i++)
{
int w=succ[v][i];
if (!semi[w])
{
parent[w]=v;
dfs(w);
}
pred[w].push_back(v);
}
}
void compress(int v){
if (ancestor[ancestor[v]])
{
compress(ancestor[v]);
if (semi[label[ancestor[v]]]<semi[label[v]])
label[v]=label[ancestor[v]];
ancestor[v]=ancestor[ancestor[v]];
}
}
/*
int eval(int v){
if (!ancestor[v])
return v;
else
{
compress(v);
return label[v];
}
}
void link(int v,int w){
ancestor[w]=v;
}
*/
int eval(int v){
if (!ancestor[v])
return label[v];
else
{
compress(v);
return semi[label[ancestor[v]]]>=semi[label[v]]?
label[v]:label[ancestor[v]];
}
}
void link(int v,int w){
int s=w;
while (semi[label[w]]<semi[label[child[s]]])
if (size[s]+size[child[child[s]]]>=2*size[child[s]])
{
ancestor[child[s]]=s;
child[s]=child[child[s]];
}
else
{
size[child[s]]=size[s];
s=ancestor[s]=child[s];
}
label[s]=label[w];
size[v]+=size[w];
if (size[v]<2*size[w])
swap(s,child[v]);
while (s)
{
ancestor[s]=v;
s=child[s];
}
}
void dominators(int r){
int u,v,w;
n=succ.size()-1;
dom=parent=ancestor=child=vertex=label=semi=size=
vector<int>(n+1,0);
pred=bucket=vector<vector<int> >(n+1);
n=0;
dfs(r);
int i,j;
for (i=n; i>=2; i--)
{
int w=vertex[i];
for (j=0; j<pred[w].size(); j++)
{
v=pred[w][j];
u=eval(v);
if (semi[u]<semi[w])
semi[w]=semi[u];
}
bucket[vertex[semi[w]]].push_back(w);
link(parent[w],w);
for (j=0; j<bucket[parent[w]].size(); j++)
{
v=bucket[parent[w]][j];
u=eval(v);
dom[v]=semi[u]<semi[v]?u:parent[w];
}
}
for (i=2; i<=n; i++)
{
w=vertex[i];
if (dom[w]!=vertex[semi[w]])
dom[w]=dom[dom[w]];
}
dom[r]=0;
}
// Lengauer-Tarjan algorithm ends here
int in()
{
char c=0;
int x=0;
do
c=getchar_unlocked();
while (c<=32);
do
{
x=(x<<1)+(x<<3)+c-'0';
c=getchar_unlocked();
}
while (c>32);
return x;
}
int main()
{
int T,V,E,p,q;
T=10;
while (T--)
{
V=in(); E=in();
succ=vector<vector<int> >(V+1);
while (E--)
{
p=in(); q=in();
succ[p].push_back(q);
}
dominators(1);
vector<int> lol;
int i;
for (i=2; i<=V; i++)
lol.push_back(dom[i]);
sort(lol.begin(),lol.end());
vector<int>::iterator It=unique(lol.begin(),lol.end());
printf("%d\n",It-lol.begin());
for (vector<int>::iterator It2=lol.begin(); It2!=It; It2++)
printf("%d ",*It2);
printf("\n");
}
return 0;
}