-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
46 lines (36 loc) · 1.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""Train the model"""
import argparse
import os
import tensorflow as tf
from model.input_fn import train_input_fn
from model.input_fn import test_input_fn
from model.model_fn import model_fn
from model.model_fn import inception_v3_model_fn
from model.utils import Params
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', default='Hyperparameters/batch_hard',
help="Experiment directory containing params.json")
parser.add_argument('--data_dir', default='lfw-dataset',
help="Directory containing the dataset")
if __name__ == '__main__':
tf.reset_default_graph()
tf.logging.set_verbosity(tf.logging.INFO)
# Load the parameters from json file
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = Params(json_path)
# Define the model
tf.logging.info("Creating the model...")
config = tf.estimator.RunConfig(tf_random_seed=230,
model_dir=args.model_dir,
save_summary_steps=params.save_summary_steps)
estimator = tf.estimator.Estimator(inception_v3_model_fn, params=params, config=config)
# Train the model
tf.logging.info("Starting training for {} epoch(s).".format(params.num_epochs))
estimator.train(lambda: train_input_fn(args.data_dir, params))
# Evaluate the model on the test set
tf.logging.info("Evaluation on test set.")
res = estimator.evaluate(lambda: test_input_fn(args.data_dir, params))
for key in res:
print("{}: {}".format(key, res[key]))