forked from antgroup/echomimic
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_motion_sync.py
136 lines (110 loc) · 5.95 KB
/
demo_motion_sync.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from src.utils.mp_utils import LMKExtractor
from src.utils.draw_utils import FaceMeshVisualizer
from src.utils.img_utils import pil_to_cv2, cv2_to_pil, center_crop_cv2, pils_from_video, save_videos_from_pils, save_video_from_cv2_list
from PIL import Image
import cv2
from IPython import embed
import numpy as np
import copy
from src.utils.motion_utils import motion_sync
import pathlib
import torch
import pickle
from glob import glob
import os
vis = FaceMeshVisualizer(draw_iris=False, draw_mouse=True, draw_eye=True, draw_nose=True, draw_eyebrow=True, draw_pupil=True)
imsize = (512, 512)
visualization = True
driver_video = "./assets/driven_videos/a.mp4"
# driver_videos = glob("/nas2/luoque.lym/evaluation/test_datasets/gt_data/OurDataset/*.mp4")
ref_image = './assets/test_imgs/d.png'
# ref_image = 'panda.png'
lmk_extractor = LMKExtractor()
input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), imsize) for i in pils_from_video(driver_video)]
ref_frame =cv2.resize(cv2.imread(ref_image), (512, 512))
ref_det = lmk_extractor(ref_frame)
# print(ref_det)
sequence_driver_det = []
try:
for frame in input_frames_cv2:
result = lmk_extractor(frame)
assert result is not None, "{}, bad video, face not detected".format(driver_video)
sequence_driver_det.append(result)
except:
print("face detection failed")
exit()
print(len(sequence_driver_det))
if visualization:
pose_frames_driver = [vis.draw_landmarks((512, 512), i["lmks"], normed=True) for i in sequence_driver_det]
poses_add_driver = [(i * 0.5 + j * 0.5).clip(0,255).astype(np.uint8) for i, j in zip(input_frames_cv2, pose_frames_driver)]
save_dir = './{}'.format(ref_image.split('/')[-1].replace('.png', ''))
os.makedirs(save_dir, exist_ok=True)
sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
for i in range(len(sequence_det_ms)):
with open('{}/{}.pkl'.format(save_dir, i), 'wb') as file:
pickle.dump(sequence_det_ms[i], file)
if visualization:
pose_frames = [vis.draw_landmarks((512, 512), i, normed=False) for i in sequence_det_ms]
poses_add = [(i * 0.5 + ref_frame * 0.5).clip(0,255).astype(np.uint8) for i in pose_frames]
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det, per_landmark_align=False)
# for i in range(len(sequence_det_ms)):
# tmp = {}
# tmp["lmks"] = sequence_det_ms[i]
# with open('{}_v2/{}.pkl'.format(save_dir, i), 'wb') as file:
# pickle.dump(tmp, file)
# pose_frames_wo_lmkalign = [vis.draw_landmarks((512, 512), i, normed=False) for i in sequence_det_ms]
# poses_add_wo_lmkalign = [(i * 0.5 + ref_frame * 0.5).clip(0,255).astype(np.uint8) for i in pose_frames_wo_lmkalign]
poses_cat = [np.concatenate([i, j], axis=1) for i, j in zip(poses_add_driver, poses_add)]
save_video_from_cv2_list(poses_cat, "./vis_example.mp4", fps=24.0)
# for ref_image in ref_images[:1]:
# # for driver_video in driver_videos:
# # ref_image = "./samples/007.png"
# # save_dir = '/nas2/jiajiong.caojiajio/data/test_pose/OurDataset/{}'.format(driver_video.split('/')[-1].replace('.mp4', ''))
# save_dir = './{}'.format(ref_image.split('/')[-1].replace('.png', ''))
# os.makedirs(save_dir+'_v1', exist_ok=True)
# os.makedirs(save_dir+'_v2', exist_ok=True)
# #"./samples/hedra_003.png"
# #"./samples/video_temp_fix.mov"
# input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), imsize) for i in pils_from_video(driver_video)]
# # input_frames_cv2 = [cv2.resize(pil_to_cv2(i), imsize) for i in pils_from_video(driver_video)]
# lmk_extractor = LMKExtractor()
# ref_frame =cv2.resize(cv2.imread(ref_image), (512, 512))
# ref_det = lmk_extractor(ref_frame)
# sequence_driver_det = []
# try:
# for frame in input_frames_cv2:
# result = lmk_extractor(frame)
# assert result is not None, "{}, bad video, face not detected".format(driver_video)
# sequence_driver_det.append(result)
# except:
# continue
# print(len(sequence_driver_det))
# # os.makedirs(save_dir, exist_ok=True)
# # for i in range(len(sequence_driver_det)):
# # with open('{}/{}.pkl'.format(save_dir, i), 'wb') as file:
# # pickle.dump(sequence_driver_det[i]["lmks"] * imsize[0], file)
# #[vis.draw_landmarks(imsize, i["lmks"], normed=True, white=True) for i in det_results]
# pose_frames_driver = [vis.draw_landmarks((512, 512), i["lmks"], normed=True) for i in sequence_driver_det]
# poses_add_driver = [(i * 0.5 + j * 0.5).clip(0,255).astype(np.uint8) for i, j in zip(input_frames_cv2, pose_frames_driver)]
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
# for i in range(len(sequence_det_ms)):
# tmp = {}
# tmp["lmks"] = sequence_det_ms[i]
# with open('{}_v1/{}.pkl'.format(save_dir, i), 'wb') as file:
# pickle.dump(tmp, file)
# pose_frames = [vis.draw_landmarks((512, 512), i, normed=False) for i in sequence_det_ms]
# poses_add = [(i * 0.5 + ref_frame * 0.5).clip(0,255).astype(np.uint8) for i in pose_frames]
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det, per_landmark_align=False)
# for i in range(len(sequence_det_ms)):
# tmp = {}
# tmp["lmks"] = sequence_det_ms[i]
# with open('{}_v2/{}.pkl'.format(save_dir, i), 'wb') as file:
# pickle.dump(tmp, file)
# pose_frames_wo_lmkalign = [vis.draw_landmarks((512, 512), i, normed=False) for i in sequence_det_ms]
# poses_add_wo_lmkalign = [(i * 0.5 + ref_frame * 0.5).clip(0,255).astype(np.uint8) for i in pose_frames_wo_lmkalign]
# poses_cat = [np.concatenate([i, j, k], axis=1) for i, j, k in zip(poses_add_driver, poses_add_wo_lmkalign, poses_add)]
# save_video_from_cv2_list(poses_cat, "./output/example2.mp4", fps=24.0)
# # exit()
# #embed()
# #poses_cat = [(i * 0.5 + j * 0.5).clip(0,255).astype(np.uint8) for i, j in zip(input_frames_cv2, pose_frames)]
# #save_videos_from_pils([cv2_to_pil(i) for i in poses_cat], "./output/pose_cat.mp4", fps=24)