-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathVASP_Analyzer.py
957 lines (841 loc) · 44.6 KB
/
VASP_Analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
__author__ = 'Ryan Jacobs'
__version__ = '2.0'
__date__ = 'Last updated March 27, 2017'
"""
VASP_Analyzer is a module designed to handle basic analysis of VASP input and output files. It also contains some
miscellaneous job utilities designed to gather completed job data and assess the convergence of jobs.
Most users will not need to call any of the functions in this module.
Instead, the VASP_PostProcessing and VASP_Setup modules draw upon the functions included here.
"""
import re
import numpy as np
import os
import json
import time
import getpass
import subprocess
import logging
import shutil
import pandas as pd
from pprint import pprint
class PoscarAnalyzer(object):
"""Class used to obtain basic, useful quantities from the POSCAR file.
args:
poscar: (str), the name of a POSCAR file
instance methods:
get_element_names : (list) returns a list containing element names from POSCAR
get_atom_amounts : (list) returns a list containing atom numbers of each element from POSCAR
get_total_atoms : (int) returns total number of atoms in POSCAR
get_composition_dict : (dict) returns dict of {"Element" : atom_number} for all species in POSCAR
get_element_composition : (list) returns composition of each element, by normalizing the number of atoms of each
element by the total number of atoms in the system
get_lattice_parameters : (numpy array) returns array of lattice parameters, in Angstroms
get_cell_volume : (float) returns total volume of supercell
get_atom_positions_direct : (numpy array) returns positions of all atoms in supercell, in direct coordinates
get_atom_positions_cartesian : (numpy array) returns positions of all atoms in supercell, in units of Angstroms
"""
def __init__(self, poscar="POSCAR"):
self.poscar = poscar
def get_element_names(self):
poscar = open(self.poscar, "r")
poscar_data = poscar.readlines()
element_names = re.findall(r"[\w']+", poscar_data[5])
poscar.close()
return element_names
def get_atom_amounts(self):
atom_amounts = []
poscar = open(self.poscar, "r")
poscar_data = poscar.readlines()
atoms = re.findall(r"[\w']+", poscar_data[6])
for entry in atoms:
atom_amounts.append(int(entry))
poscar.close()
return atom_amounts
def get_total_atoms(self):
total_atoms = 0
atom_amounts = self.get_atom_amounts()
for index in range(len(atom_amounts)):
total_atoms += float(atom_amounts[index])
return total_atoms
def get_composition_dict(self, write_to_file=False):
composition_dict = {}
atom_amounts = self.get_atom_amounts()
element_names = self.get_element_names()
for element, atom in zip(element_names, atom_amounts):
composition_dict[element] = atom
if write_to_file == bool(True):
f = open("composition.txt", "w")
for key, value in composition_dict.items():
f.write(str(key)+str(value))
f.close()
return composition_dict
def get_element_composition(self):
element_composition = []
total_atoms = self.get_total_atoms()
atom_amounts = self.get_atom_amounts()
for index in range(len(atom_amounts)):
element_composition.append(float(atom_amounts[index]/total_atoms))
return element_composition
def get_lattice_parameters(self):
lattice_parameters = []; lattice_parameters_split = []
poscar = open(self.poscar, "r")
poscar_data = poscar.readlines()
for index in range(len(poscar_data)):
if index > 1 and index < 5:
lattice_parameters.append(poscar_data[index])
for index in range(len(lattice_parameters)):
lattice_parameters_split.append(lattice_parameters[index].split())
for index in range(len(lattice_parameters_split)):
if index == 0:
lattice_parameters_xcolumn = np.array([float(lattice_parameters_split[index][index]), float(lattice_parameters_split[index+1][index]), float(lattice_parameters_split[index+2][index])])
if index == 1:
lattice_parameters_ycolumn = np.array([float(lattice_parameters_split[index-1][index]), float(lattice_parameters_split[index][index]), float(lattice_parameters_split[index+1][index])])
if index == 2:
lattice_parameters_zcolumn = np.array([float(lattice_parameters_split[index-2][index]), float(lattice_parameters_split[index-1][index]), float(lattice_parameters_split[index][index])])
lattice_parameters = np.array([lattice_parameters_xcolumn, lattice_parameters_ycolumn, lattice_parameters_zcolumn])
poscar.close()
return lattice_parameters
def get_cell_volume(self):
lattice_parameters = self.get_lattice_parameters()
lattice_parameters_x = np.sqrt((lattice_parameters[0][0])**2+(lattice_parameters[0][1])**2+(lattice_parameters[0][2])**2)
lattice_parameters_y = np.sqrt((lattice_parameters[1][0])**2+(lattice_parameters[1][1])**2+(lattice_parameters[1][2])**2)
lattice_parameters_z = np.sqrt((lattice_parameters[2][0])**2+(lattice_parameters[2][1])**2+(lattice_parameters[2][2])**2)
cell_volume = lattice_parameters_x*lattice_parameters_y*lattice_parameters_z
return cell_volume
def get_atom_positions_direct(self):
atom_positions = []; atom_positions_split = []; atom_positions_split_float_x = []; atom_positions_split_float_y = []
atom_positions_split_float_z = []; atom_positions_array = np.empty((0,1)); atom_positions_array_x = np.empty((0,1)); atom_positions_array_y = np.empty((0,1))
atom_positions_array_z = np.empty((0,1))
poscar = open(self.poscar, "r")
poscar_data = poscar.readlines()
total_atoms = self.get_total_atoms()
atom_position_start = 7
atom_position_end = 8
for line in poscar_data:
if "Selective dynamics" in line or "Selective Dynamics" in line:
atom_position_start = 8
atom_position_end = 9
for index in range(len(poscar_data)):
if index > atom_position_start and index < total_atoms+atom_position_end:
atom_positions.append(poscar_data[index])
for index in range(len(atom_positions)):
atom_positions_split.append(atom_positions[index].split())
for index in range(len(atom_positions_split)):
atom_positions_split_float_x.append(float(atom_positions_split[index][0]))
atom_positions_split_float_y.append(float(atom_positions_split[index][1]))
atom_positions_split_float_z.append(float(atom_positions_split[index][2]))
for index in range(len(atom_positions_split)):
atom_positions_array_x = np.insert(atom_positions_array_x, index, atom_positions_split_float_x[index])
atom_positions_array_y = np.insert(atom_positions_array_y, index, atom_positions_split_float_y[index])
atom_positions_array_z = np.insert(atom_positions_array_z, index, atom_positions_split_float_z[index])
atom_positions_array = np.array([atom_positions_array_x, atom_positions_array_y, atom_positions_array_z])
poscar.close()
return atom_positions_array
def get_atom_positions_cartesian(self):
x_coords_cart = []; y_coords_cart = []; z_coords_cart = []
atom_positions_array_x = np.empty((0,1)); atom_positions_array_y = np.empty((0,1)); atom_positions_array_z = np.empty((0,1))
atom_positions_array = self.get_atom_positions_direct()
lattice_parameters = self.get_lattice_parameters()
for index in range(len(atom_positions_array[0])):
x_coords_cart.append(atom_positions_array[0][index]*lattice_parameters[0][0]+atom_positions_array[1][index]*lattice_parameters[0][1]+atom_positions_array[2][index]*lattice_parameters[0][2])
y_coords_cart.append(atom_positions_array[0][index]*lattice_parameters[1][0]+atom_positions_array[1][index]*lattice_parameters[1][1]+atom_positions_array[2][index]*lattice_parameters[1][2])
z_coords_cart.append(atom_positions_array[0][index]*lattice_parameters[2][0]+atom_positions_array[1][index]*lattice_parameters[2][1]+atom_positions_array[2][index]*lattice_parameters[2][2])
for index in range(len(x_coords_cart)):
atom_positions_array_x = np.insert(atom_positions_array_x, index, x_coords_cart[index])
atom_positions_array_y = np.insert(atom_positions_array_y, index, y_coords_cart[index])
atom_positions_array_z = np.insert(atom_positions_array_z, index, z_coords_cart[index])
atom_positions_array = np.array([atom_positions_array_x, atom_positions_array_y, atom_positions_array_z])
return atom_positions_array
class OutcarAnalyzer(object):
"""Class used to obtain basic, useful quantities from the OUTCAR file.
args:
outcar: (str), the name of an OUTCAR file
instance methods:
get_fermi_energy: (float) returns the Fermi energy of the final ionic iteration of VASP run
get_dipole : (float) returns the dipole moment of the final ionic iteration of VASP run
get_bandgap : (float) returns the electronic band gap, computed from eigenvalues in OUTCAR
get_magnetization_per_atom : (dict) returns a dict of {atom number : total_magnetization}, that is, the total
magnetization (sum of s, p, d, and f) for each atom in the POSCAR file
"""
def __init__(self, outcar="OUTCAR"):
self.outcar = outcar
def get_fermi_energy(self):
outcar = open(str(self.outcar), "r")
outcar_data = outcar.readlines()
Efermi_list = []
for entry in outcar_data:
if 'E-fermi' in entry:
Efermi_list.append(entry)
Efermi_datalist = []
for entry in Efermi_list:
Efermi_data = re.findall(r"[-+]?\d*\.\d+|\d+",entry)
Efermi_datalist.append(Efermi_data)
fermi_energy = float(Efermi_datalist[-1][0])
return fermi_energy
def get_dipole(self):
dipole_list = []
outcar = open(str(self.outcar), "r")
outcar_data = outcar.readlines()
for entry in outcar_data:
if 'LDIPOL = F' in entry:
raise ValueError("LDIPOL is set to F, no dipole value for this job")
if 'dipolmoment' in entry:
dipole_list.append(entry)
dipole_datalist = []
for entry in dipole_list:
dipole_data = re.findall(r"[-+]?\d*\.\d+|\d+",entry)
dipole_datalist.append(dipole_data)
dipole = float(dipole_datalist[-1][-1])
return dipole
def get_bandgap(self):
fermi = self.get_fermi_energy()
outcar = open(str(self.outcar), "r")
outcar_data = outcar.readlines()
# Get number of kpoints and number of bands, needed for eigenvalue looping
# Find eigenvalue list of last ionic iteration
for line_number, line in enumerate(outcar_data):
if "NKPTS" in line and "NBANDS" in line:
nkpts = int(line.split()[3])
nbands = int(line.split()[14])
if " E-fermi : %s" % (str(fermi)) in line or " E-fermi : %s" % (str(fermi)) in line:
eigenvalue_list_start = line_number
VBM_list_perkpt = []
CBM_list_perkpt = []
for line_number, line in enumerate(outcar_data):
if line_number >= eigenvalue_list_start:
if "spin component" in line:
# Start the kpt count at 0 for each spin component
kpt_count = 0
if "band No." in line:
band_numbers = []
energies = []
occupancies = []
VBM_list = []
CBM_list = []
for band in range(nbands):
eigenvalue = outcar_data[line_number + band + 1]
band_numbers.append(float(eigenvalue.split()[0]))
energies.append(float(eigenvalue.split()[1]))
occupancies.append(float(eigenvalue.split()[2]))
for index_energies, index_occupancies in zip(range(len(energies)), range(len(occupancies))):
if occupancies[index_occupancies] > 0:
VBM_list.append(energies[index_occupancies])
elif occupancies[index_occupancies] == 0:
CBM_list.append(energies[index_occupancies])
VBM_list_perkpt.append(max(VBM_list))
CBM_list_perkpt.append(min(CBM_list))
kpt_count += 1
VBM = max(VBM_list_perkpt)
CBM = min(CBM_list_perkpt)
Egap = CBM - VBM
#print "The bandgap of this material from OUTCAR is %s eV" % (Egap)
bandgapfile = open("bandgap_fromoutcar.txt", "w")
Egap = str(Egap)
bandgapfile.write(Egap)
bandgapfile.close()
return Egap
def get_magnetization_per_atom(self):
mag_data_raw = []; mag_data_dict = {}
line_counting = False
total_atoms = PoscarAnalyzer().get_total_atoms()
outcar = open(str(self.outcar), "r")
for line in outcar.readlines():
if "magnetization (x)" in line:
line_count = 0
line_counting = True
if line_counting == bool(True) and line_count < total_atoms+5:
mag_data_raw.append(line.strip())
line_count += 1
# Only report the last batch of magnetization data, which is for the last ionic iteration
max_magnetization_index = 0
for index, entry in enumerate(mag_data_raw):
if "magnetization" in entry:
if index > max_magnetization_index:
max_magnetization_index = index
for index, entry in enumerate(mag_data_raw):
if index >= max_magnetization_index+4 and index < max_magnetization_index+total_atoms+4:
mag_data_dict[int(entry.split()[0])] = float(entry.split()[-1])
return mag_data_dict
def get_magnetization_for_element_type(self, element, write_to_file=False):
mag_data_dict = self.get_magnetization_per_atom()
pa = PoscarAnalyzer()
element_names = pa.get_element_names()
atom_amounts = pa.get_atom_amounts()
composition = pa.get_composition_dict(write_to_file=False)
element_label_dict = {}
# Make dict of atom numbers and assign appropriate element to them
atom_count = 0
element_mag = 0
for entry1, entry2 in zip(element_names, atom_amounts):
for index in range(entry2):
atom_count += 1
element_label_dict[atom_count] = entry1
# Go through mag_data_dict and add magnetization of element type arg
for value1, value2 in zip(element_label_dict.values(), mag_data_dict.values()):
if value1 == element:
element_mag += float(value2)
# Normalize element_mag by the number of atoms of that type
for key, value in composition.items():
if key == element:
number_of_atoms_for_element = value
element_mag = element_mag/number_of_atoms_for_element
if write_to_file == bool(True):
filestr = element+"_element_magnetization.txt"
file = open(filestr, "w")
file.write(str(element_mag))
file.close()
return element_mag
class OszicarAnalyzer(object):
"""Class used to obtain basic, useful quantities from the OSZICAR file.
args:
oszicar: (str) the name of an OSZICAR file
poscar: (str) a POSCAR file
instance methods:
get_energy : (float) returns the DFT E0 value of the final ionic iteration
get_energy_per_atom : (float) returns the DFT E0 value of final ionic iteration, normalized to be per atom
get_total_magnetization : (float) returns the total converged magnetization of the system
"""
def __init__(self, oszicar="OSZICAR", poscar="POSCAR"):
self.oszicar = oszicar
self.poscar = poscar
def get_energy(self):
oszicar = open(str(self.oszicar), "r")
oszicar_data = oszicar.readlines()
E0_list = []
for entry in oszicar_data:
if 'E0=' in entry:
E0_list.append(entry)
E0_datalist = []
for entry in E0_list:
E0_data = re.findall("-?0?.?\ *[0-9]+\.?\+?[0-9]*(?:[Ee][E-]\ *-?\ *[0-9]+)?(?:[Ee][E+]\ *-?\ *[0-9]+)?",entry)
E0_datalist.append(E0_data)
energy = float(E0_datalist[-1][3])
oszicar.close()
return energy
def get_energy_per_atom(self):
energy = self.get_energy
total_atoms = PoscarAnalyzer(self.poscar).get_total_atoms
energy_per_atom = energy/total_atoms
return energy_per_atom
def get_total_magnetization(self):
oszicar = open(str(self.oszicar), "r")
oszicar_data = oszicar.readlines()
mag_list = []
for entry in oszicar_data:
if 'mag=' in entry:
mag_list.append(entry)
magdata_list = []
for entry in mag_list:
mag_data = re.findall(r"[-+]?\d*\.\d+|\d+", entry)
magdata_list.append(mag_data)
total_mag = float(magdata_list[-1][-1])
oszicar.close()
return total_mag
class DirectoryUtilities(object):
"""Class used to perform some basic directory manipulation tasks.
args: None
static methods:
get_full_directory_list : (list) returns a list of all directories under the current working directory
get_downmost_directory_list : (list) returns a list of all directories under the current working directory, that
are at the bottom of the directory tree.
"""
@staticmethod
def get_full_directory_list():
#Get all directories, excluding the cwd
cwd = os.getcwd()
directory_list = []
for directory, subdirs, files in os.walk(cwd):
if directory != cwd:
directory_list.append(directory)
directory_list.sort()
return directory_list
@staticmethod
def get_downmost_directory_list():
#Get all directories, returning only downmost directories in directory tree
cwd = os.getcwd()
directory_list = []
for directory, subdirs, files in os.walk(cwd):
if not subdirs:
directory_list.append(directory)
directory_list.sort()
return directory_list
@staticmethod
def _parse_directory_list(directory_list_to_parse):
parsed_directory_list = []
for entry in directory_list_to_parse:
# For each directory, check if VASP input files exist. If they do, it's a relevant directory to analyze.
if os.path.exists(entry+"/"+"POSCAR") and os.path.exists(entry+"/"+"POTCAR") and os.path.exists(entry+"/"+"KPOINTS") and os.path.exists(entry+"/"+"INCAR"):
parsed_directory_list.append(entry)
else:
continue
return parsed_directory_list
@staticmethod
def _modify_directory_list(directory_list, *args):
# Remove directories from directory_lists based on directory names provided in *args
modified_directory_list = []; directories_to_remove = []
for directory_set in args:
for directory in directory_set:
directories_to_remove.append(directory)
for directory in directory_list:
if directory not in directories_to_remove:
modified_directory_list.append(directory)
return modified_directory_list
class TimeUtilities(object):
"""Class to perform basic time-related tasks. The user should not call any methods here
"""
@staticmethod
def _parse_updated_time(last_updated_time):
last_updated_month = last_updated_time[4:7]
last_updated_day = int(last_updated_time[8:10])
last_updated_hour = int(last_updated_time[11:13])
last_updated_minute = int(last_updated_time[14:16])
last_updated_second = int(last_updated_time[17:19])
last_updated_year = int(last_updated_time[20:24])
if str(last_updated_month) == "Jan":
last_updated_month = int(1)
elif str(last_updated_month) == "Feb":
last_updated_month = int(2)
elif str(last_updated_month) == "Mar":
last_updated_month = int(3)
elif str(last_updated_month) == "Apr":
last_updated_month = int(4)
elif str(last_updated_month) == "May":
last_updated_month = int(5)
elif str(last_updated_month) == "Jun":
last_updated_month = int(6)
elif str(last_updated_month) == "Jul":
last_updated_month = int(7)
elif str(last_updated_month) == "Aug":
last_updated_month = int(8)
elif str(last_updated_month) == "Sep":
last_updated_month = int(9)
elif str(last_updated_month) == "Oct":
last_updated_month = int(10)
elif str(last_updated_month) == "Nov":
last_updated_month = int(11)
elif str(last_updated_month) == "Dec":
last_updated_month = int(12)
last_updated_time_parsed = []
last_updated_time_parsed.append(last_updated_year); last_updated_time_parsed.append(last_updated_month)
last_updated_time_parsed.append(last_updated_day); last_updated_time_parsed.append(last_updated_hour)
last_updated_time_parsed.append(last_updated_minute); last_updated_time_parsed.append(last_updated_second)
return last_updated_time_parsed
@staticmethod
def _get_current_time_data():
current_time_data = []
current_time_year = time.strftime("%Y"); current_time_month = time.strftime("%m"); current_time_day = time.strftime("%d")
current_time_hour = time.strftime("%H"); current_time_minute = time.strftime("%M"); current_time_second = time.strftime("%S")
current_time_data.append(int(current_time_year)); current_time_data.append(int(current_time_month)); current_time_data.append(int(current_time_day))
current_time_data.append(int(current_time_hour)); current_time_data.append(int(current_time_minute)); current_time_data.append(int(current_time_second))
return current_time_data
@staticmethod
def _get_file_update_time(directory, filename):
file_update_time = str(time.ctime(os.path.getmtime(directory + "/" + filename)))
current_time_data = TimeUtilities._get_current_time_data()
file_update_time_parsed = TimeUtilities._parse_updated_time(last_updated_time=file_update_time)
file_update_time_difference = abs(file_update_time_parsed[2] - current_time_data[2]) * 24 + \
abs(file_update_time_parsed[3] - current_time_data[3])
return file_update_time, file_update_time_difference
class JobAnalyzer(object):
"""Class to perform DFT job convergence analysis. The user should not call any methods here
"""
def __init__(self):
pass
def _prune_directory_list(self, orig_directory_list, directory_list_to_remove):
pruned_directory_list = list()
for directory in orig_directory_list:
if directory not in directory_list_to_remove:
pruned_directory_list.append(directory)
return pruned_directory_list
def _get_running_and_queued_jobs(self, directory_list):
parent_directory = os.getcwd()
running_jobs = []
queued_jobs = []
# Get current job log data
user_id = getpass.getuser()
job_numbers = []
try:
job_status = subprocess.Popen(['squeue', '-u', '%s' % (user_id)], stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
except(OSError):
# If squeue fails, try qstat.
job_status = subprocess.Popen(['qstat', '-u', '%s' % (user_id)], stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
# Get the directories that have jobs running, based on their job numbers
count = 0
line_number = 0
jobs_are_running = True
for line in job_status.stdout.readlines():
if line_number > 0:
if "---" in line:
continue
else:
job_numbers.append(int(line.split()[0]))
count += 1
line_number += 1
if count == 0:
jobs_are_running = False
if jobs_are_running == False:
running_and_queued_job_dirs = []
elif jobs_are_running == True:
# Find directories which have those job numbers
for job_number in job_numbers:
path_with_job_running = subprocess.Popen(['find', parent_directory, '-name', '*%i*' % (job_number)], stdout=subprocess.PIPE)
if path_with_job_running is not '':
directory_with_job_running = os.path.dirname(path_with_job_running.stdout.readline())
running_jobs.append(directory_with_job_running)
else:
directory_with_job_running = os.path.dirname(path_with_job_running.stdout.readline())
queued_jobs.append(directory_with_job_running)
pruned_directory_list1 = self._prune_directory_list(orig_directory_list=directory_list, directory_list_to_remove=running_jobs)
pruned_directory_list = self._prune_directory_list(orig_directory_list=pruned_directory_list1, directory_list_to_remove=queued_jobs)
return running_jobs, queued_jobs, pruned_directory_list
def _get_complete_and_incomplete_jobs(self, directory_list, dE_tolerance=float(10**-2)):
completed_job_dirs = []; incomplete_job_dirs = []
for directory in directory_list:
os.chdir(directory)
try:
oszicar = open("OSZICAR", "r")
oszicar_exists = True
except(IOError):
continue
if oszicar_exists == bool(True):
dE_list = []
for line in oszicar:
if 'd E =' in line:
dE_list.append(line)
dE_datalist = []
for entry in dE_list:
dE_data = re.findall("=?0?-?0?.?\ *[0-9]+\.?\+?[0-9]*(?:[Ee][E-]\ *-?\ *[0-9]+)?(?:[Ee][E+]\ *-?\ *[0-9]+)?", entry)
dE_datalist.append(dE_data)
try:
if '=' in dE_datalist[-1][4]:
dE_datalist[-1][4] = re.sub('=', '', dE_datalist[-1][4])
dE = float(dE_datalist[-1][4])
if abs(dE) < abs(dE_tolerance):
# In addition to converged energy, check that DOSCAR is written based on file size
if os.path.getsize(directory+"/"+"DOSCAR") > 1000:
completed_job_dirs.append(directory)
elif abs(dE) >= abs(dE_tolerance):
# Job most likely finished if the OUTCAR was updated longer than outcar_update_time_tolerance ago
outcar_time, outcar_time_difference = TimeUtilities._get_file_update_time(directory=directory, filename="OUTCAR")
if outcar_time_difference > 2:
# Don't include directories as "incomplete" if they have continuation directories present.
if os.path.exists(directory + "/" + "continue"):
continue
else:
incomplete_job_dirs.append(directory)
continue
except(IndexError):
continue
oszicar.close()
pruned_directory_list1 = self._prune_directory_list(orig_directory_list=directory_list, directory_list_to_remove=completed_job_dirs)
pruned_directory_list = self._prune_directory_list(orig_directory_list=pruned_directory_list1, directory_list_to_remove=incomplete_job_dirs)
return completed_job_dirs, incomplete_job_dirs, pruned_directory_list
def _get_crashed_jobs(self, directory_list):
crashed_job_dirs = []
#directory_list = DirectoryUtilities.get_downmost_directory_list()
for directory in directory_list:
os.chdir(directory)
# Check if the OSZICAR file exists
try:
oszicar = open("OSZICAR", "r")
oszicar_exists = True
except(IOError):
continue
if oszicar_exists == True:
dE_list = []
for line in oszicar:
if 'd E =' in line:
dE_list.append(line)
dE_datalist = []
for entry in dE_list:
dE_data = re.findall("=?0?-?0?.?\ *[0-9]+\.?\+?[0-9]*(?:[Ee][E-]\ *-?\ *[0-9]+)?(?:[Ee][E+]\ *-?\ *[0-9]+)?", entry)
dE_datalist.append(dE_data)
try:
if '=' in dE_datalist[-1][4]:
dE_datalist[-1][4] = re.sub('=', '', dE_datalist[-1][4])
except(IndexError):
crashed_job_dirs.append(directory)
continue
try:
dE = dE_datalist[-1][4]
except(IOError):
crashed_job_dirs.append(directory)
continue
return crashed_job_dirs
def _get_nonstarted_and_old_jobs(self, directory_list):
directory_time_last_updated_dict = {}
nonstarted_job_dirs = []
old_job_dirs = []
current_job_dirs = []
for directory in directory_list:
# Check if the OSZICAR file exists. If it does, get time it was last updated.
if os.path.exists(directory + "/" + "OSZICAR"):
last_updated_time = str(time.ctime(os.path.getmtime(directory + "/" + "OSZICAR")))
last_updated_time_parsed = TimeUtilities._parse_updated_time(last_updated_time=last_updated_time)
directory_time_last_updated_dict[directory] = last_updated_time_parsed
# If OSZICAR file doesn't exist, job hasn't run yet.
else:
nonstarted_job_dirs.append(directory)
# Get current time
current_time_data = TimeUtilities._get_current_time_data()
update_time_cutoff = 672
# Check if last update times in directory dictionary are within certain timespan (e.g., 24 hours)
for key, value in directory_time_last_updated_dict.items():
# Eliminate directories that were not updated within the update_time_cutoff cutoff
# Eliminating directories updated in different year
if value[0] != current_time_data[0]:
old_job_dirs.append(key)
# If directory updated within value specified by update_time_cutoff, add to current directory list
# Ensuring directory updated on same year, then check day cutoff, then hour cutoff
elif value[0] == current_time_data[0]:
if abs(value[2] - current_time_data[2]) <= (update_time_cutoff / 24):
if abs((value[3] - current_time_data[3]) * 24) <= update_time_cutoff:
current_job_dirs.append(key)
# Eliminate directories updated more than update_time_cutoff ago
if abs(value[2] - current_time_data[2]) > (update_time_cutoff / 24):
old_job_dirs.append(key)
return nonstarted_job_dirs, old_job_dirs, current_job_dirs
class JobMonitor(JobAnalyzer, DirectoryUtilities, TimeUtilities):
"""Class to perform DFT job monitoring tasks. The user should not call any methods here
"""
def __init__(self):
super(JobMonitor, self).__init__()
def _write_job_status_report(self, parent_directory, crashed_job_dirs, running_job_dirs, incomplete_job_dirs,
completed_job_dirs, resubmitted_job_dirs, submitted_new_job_dirs, nonstarted_job_dirs,
old_job_dirs):
os.chdir(parent_directory)
job_status_report_file = open("job_status_report.txt", "w")
# Write directories of crashed jobs to separate file so they can easily be found, only if crashed jobs exist
if len(crashed_job_dirs) > 0:
crashed_jobs_file = open("jobs_that_crashed.txt", "w")
crashed_jobs_file.write("The following jobs crashed and require further attention" + "\n")
crashed_jobs_file.write("\n")
for directory in crashed_job_dirs:
if directory not in old_job_dirs:
crashed_jobs_file.write(str(directory)+"\n")
crashed_jobs_file.close()
# Write directories of newly submitted jobs to separate file so they can be easily found, only if newly submitted jobs exist
if len(submitted_new_job_dirs) > 0:
submitted_jobs_file = open("jobs_newly_submitted.txt", "w")
submitted_jobs_file.write("The following jobs were previously not started and have now been submitted" + "\n")
submitted_jobs_file.write("\n")
for entry in submitted_new_job_dirs:
submitted_jobs_file.write(str(entry)+"\n")
submitted_jobs_file.close()
# Write all job data to full status report
current_time_data = self._get_current_time_data()
current_time_str = str(current_time_data[0])+"/"+str(current_time_data[1])+"/"+str(current_time_data[2])+", "+"and "+str(current_time_data[3])+" hours, " + str(current_time_data[4])+" minutes, "+str(current_time_data[5])+" seconds"
job_status_report_file.write("The following job status report file was generated on %s" % (current_time_str) + "\n")
job_status_report_file.write("\n")
job_status_report_file.write("The following directories contain jobs that crashed:" + "\n")
for entry in crashed_job_dirs:
if entry not in old_job_dirs:
job_status_report_file.write(str(entry)+"\n")
if len(crashed_job_dirs)==0:
job_status_report_file.write("(There are no jobs that were found to have crashed)" + "\n")
job_status_report_file.write("\n")
job_status_report_file.write("The following directories contain jobs that are still running:" + "\n")
for entry in running_job_dirs:
job_status_report_file.write(str(entry)+"\n")
if len(running_job_dirs)==0:
job_status_report_file.write("(There are no jobs that are currently running)" + "\n")
job_status_report_file.write("\n")
job_status_report_file.write("The following directories contain jobs that are incomplete:" + "\n")
for entry in incomplete_job_dirs:
if entry not in old_job_dirs:
job_status_report_file.write(str(entry) + "\n")
if len(incomplete_job_dirs)==0:
job_status_report_file.write("(There are no jobs that were found to be incomplete)" + "\n")
job_status_report_file.write("\n")
job_status_report_file.write("The following directories contain jobs that recently completed:" + "\n")
for entry in completed_job_dirs:
if entry not in old_job_dirs:
job_status_report_file.write(str(entry)+"\n")
if len(completed_job_dirs)==0:
job_status_report_file.write("(There are no jobs that were found to be completed)" + "\n")
job_status_report_file.write("\n")
job_status_report_file.write("The following jobs were resubmitted under these directories:" + "\n")
for entry in resubmitted_job_dirs:
job_status_report_file.write(str(entry) + "\n")
if len(resubmitted_job_dirs)==0:
job_status_report_file.write("(There are no jobs to be resubmitted)" + "\n")
job_status_report_file.write("\n")
job_status_report_file.write("The following jobs in these directories have not yet started:" + "\n")
for entry in nonstarted_job_dirs:
job_status_report_file.write(str(entry) + "\n")
if len(nonstarted_job_dirs)==0:
job_status_report_file.write("(There are no jobs that have not yet started)" + "\n")
job_status_report_file.write("\n")
job_status_report_file.write("The following directories contain old jobs that were not analyzed further:" + "\n")
for entry in old_job_dirs:
job_status_report_file.write(str(entry) + "\n")
if len(old_job_dirs)==0:
job_status_report_file.write("(There are no directories containing old jobs)" + "\n")
job_status_report_file.close()
return None
@staticmethod
def _resubmit_incomplete_jobs(incomplete_job_dirs, old_job_dirs):
resubmitted_job_dirs = []
for directory in incomplete_job_dirs:
if directory not in old_job_dirs:
os.chdir(directory)
continue_dir = directory+"/"+"continue"
try:
os.mkdir(continue_dir)
shutil.copy("CONTCAR", continue_dir)
shutil.copy("KPOINTS", continue_dir)
shutil.copy("INCAR", continue_dir)
shutil.copy("POTCAR", continue_dir)
shutil.copy("submit.sh", continue_dir)
os.chdir(continue_dir)
shutil.move("CONTCAR", "POSCAR")
logging.info("Making new continuation folder and resubmitting the job from directory %s" % (continue_dir))
try:
subprocess.Popen(['sbatch', 'submit.sh']).communicate()
except(OSError):
subprocess.Popen(['qsub', 'submit.sh']).communicate()
resubmitted_job_dirs.append(continue_dir)
except(OSError):
continue
return resubmitted_job_dirs
@staticmethod
def _submit_nonstarted_jobs(nonstarted_job_dirs, old_job_dirs):
newsubmitted_job_dirs = []
for directory in nonstarted_job_dirs:
if directory not in old_job_dirs:
os.chdir(directory)
logging.info("Submitting new job from directory %s" % (directory))
try:
subprocess.Popen(['sbatch', 'submit.sh']).communicate()
except(OSError):
subprocess.Popen(['qsub', 'submit.sh']).communicate()
newsubmitted_job_dirs.append(directory)
return newsubmitted_job_dirs
@staticmethod
def _resubmit_crashed_jobs(crashed_job_dirs, old_job_dirs):
resubmitted_crashed_job_dirs = []
for directory in crashed_job_dirs:
if directory not in old_job_dirs:
os.chdir(directory)
continue_dir = directory+"/"+"continue"
try:
os.mkdir(continue_dir)
shutil.copy("POSCAR", continue_dir)
shutil.copy("KPOINTS", continue_dir)
shutil.copy("INCAR", continue_dir)
shutil.copy("POTCAR", continue_dir)
shutil.copy("submit.sh", continue_dir)
os.chdir(continue_dir)
logging.info("Making new continuation folder and resubmitting the job from directory %s" % (continue_dir))
# Incar modification for crashed jobs
incartemp = open("INCARtemp", "w")
incar = open("INCAR", "r")
for line in incar:
if "NELMDL" not in line and "ALGO" not in line:
incartemp.write(line)
incartemp.write("ALGO = Damped"+"\n")
#incartemp.write("TIME = 0.05"+"\n")
incartemp.close()
incar.close()
shutil.move("INCARtemp", "INCAR")
try:
subprocess.Popen(['sbatch', 'submit.sh']).communicate()
except(OSError):
subprocess.Popen(['qsub', 'submit.sh']).communicate()
resubmitted_crashed_job_dirs.append(continue_dir)
except(OSError):
continue
return resubmitted_crashed_job_dirs
class VASPdata(object):
"""Class used to write all calculated VASP (analyzed and post-processing) data to spreadsheet
args:
vaspdatafile : (str) Name of a JSON file containing VASP job analysis and postprocessing data. Keep default
value if using other analysi and/or postprocessing routines in this code package, as they automatically
output values to this default file name.
instance methods:
write_vaspdata_to_spreadsheet: (None) Loops through directories and collects all data in vaspdatafile, or from
the list of files specified by the user
args:
directory_list : (list) A list of directories to loop over
use_custom_file_list : (bool) whether to collect data from manually specified file names
custom_file_list : (list) if use_custom_file_list = True, then provide a list of the filenames to get
data from.
"""
def __init__(self, vaspdatafile = "vaspdata.json"):
self.vaspdatafile = vaspdatafile
def write_vaspdata_to_spreadsheet(self, directory_list, use_custom_file_list=False, custom_file_list=None, file_list_to_string=None, save_to_excel=True):
cwd = os.getcwd()
dataframe_data = []
if use_custom_file_list == bool(True):
for directory in directory_list:
os.chdir(directory)
filecount = 0
datadict = {}
for f in custom_file_list:
try:
file_data = open(f, "r").readlines()
if f in file_list_to_string:
datadict[filecount] = file_data[0]
else:
datadict[filecount] = float(file_data[0])
except (IOError, IndexError):
print "File of type %s was not found, or there was a problem reading the file" % str(f)
filecount += 1
dataframe_data.append(datadict)
datadict[len(custom_file_list)+1] = directory
# Write all data to pandas dataframe, and rename dataframe columns
dataframe = pd.DataFrame(dataframe_data)
for index, entry in enumerate(custom_file_list):
dataframe = dataframe.rename(columns={index : entry[:-4]})
dataframe = dataframe.rename(columns={len(custom_file_list)+1 : "Directory"})
if use_custom_file_list == bool(False):
for directory in directory_list:
os.chdir(directory)
dataframe_dict = {}
vaspdatafile = open(self.vaspdatafile, "r")
vaspdata = json.load(vaspdatafile)
for key, value in vaspdata.items():
if type(value) is dict:
for key2, value2 in value.items():
dataframe_dict[key2] = value2
else:
dataframe_dict[key] = value
dataframe_dict["Directory"] = directory
dataframe_data.append(dataframe_dict)
dataframe = pd.DataFrame(dataframe_data)
# Write pandas dataframe to excel file
if save_to_excel == bool(True):
writer = pd.ExcelWriter(cwd + "/" + 'vaspdata_collected.xlsx')
dataframe.to_excel(excel_writer=writer, sheet_name='collected vaspdata', index=False)
writer.save()
return dataframe
def _output_to_vaspdata_file(self, value_names, values):
cwd = os.getcwd()
data_dict = {}
if os.path.exists(cwd+"/"+str(self.vaspdatafile)):
vaspdata = open(self.vaspdatafile, "r")
vaspdata_readin = json.load(vaspdata)
for key, value in vaspdata_readin.items():
data_dict[key] = value
vaspdata.close()
else:
self._create_vaspdata_file()
if type(value_names) is list and type(values) is list:
for entry1, entry2 in zip(value_names, values):
data_dict[entry1] = entry2
else:
data_dict[value_names] = values
vaspdata = open(self.vaspdatafile, "w")
json.dump(data_dict, vaspdata)
vaspdata.close()
return None
def _create_vaspdata_file(self):
cwd = os.getcwd()
if not os.path.exists(cwd+"/"+str(self.vaspdatafile)):
vaspdata = open(str(self.vaspdatafile), "w")
vaspdata.close()
else:
pass
return None