Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding span in print.JD3_TRAMOSEATS_OUTPUT #36

Open
TanguyBarthelemy opened this issue Apr 4, 2024 · 3 comments
Open

Adding span in print.JD3_TRAMOSEATS_OUTPUT #36

TanguyBarthelemy opened this issue Apr 4, 2024 · 3 comments

Comments

@TanguyBarthelemy
Copy link
Contributor

In the display of the output af a SA with tramoseats(), the model span and estimation span don't appear:

library("rjd3toolkit")
#> 
#> Attachement du package : 'rjd3toolkit'
#> Les objets suivants sont masqués depuis 'package:stats':
#> 
#>     aggregate, mad
library("rjd3tramoseats")
mod <- tramoseats(ABS[, 3])
print(mod)
#> TRAMO
#> Log-transformation: yes 
#> SARIMA model:  (0,1,1) (0,1,1)
#> 
#> Coefficients
#>           Estimate Std. Error T-stat
#> theta(1)  -0.53263    0.04352 -12.24
#> btheta(1) -0.68006    0.04759 -14.29
#> 
#> Regression model:
#>                  Estimate Std. Error T-stat
#> monday          -0.002354   0.003197 -0.736
#> tuesday          0.005328   0.003208  1.661
#> wednesday       -0.001262   0.003213 -0.393
#> thursday         0.009371   0.003252  2.881
#> friday           0.005155   0.003251  1.586
#> saturday         0.001834   0.003235  0.567
#> lp               0.042009   0.009963  4.216
#> AO (2000-06-01)  0.216338   0.028135  7.689
#> AO (2000-09-01)  0.121942   0.028132  4.335
#> Number of observations:  425 
#> Number of effective observations:  412 
#> Number of parameters:  12 
#> 
#> Loglikelihood:  803.5446 
#> Adjusted loglikelihood:  -1867.932 
#> 
#> Standard error of the regression (ML estimate):  0.03409052 
#> AIC:  3759.865 
#> AICC:  3760.647 
#> BIC:  3808.117 
#> 
#> 
#> Decomposition
#> model 
#> 
#> DIF:  1 -1 0 0 0 0 0 0 0 0 0 0 -1 1 
#> MA:  1 -0.5326308 0 0 0 0 0 0 0 0 0 0 -0.680057 0.3622192 
#> var:  1 
#> 
#> trend 
#> 
#> DIF:  1 -2 1 
#> MA:  1 0.03157631 -0.9684237 
#> var:  0.03893321 
#> 
#> seasonal 
#> 
#> DIF:  1 1 1 1 1 1 1 1 1 1 1 1 
#> MA:  1 1.215097 1.147765 0.9842106 0.7452866 0.4933379 0.2500601 0.0320089 -0.1365185 -0.2821708 -0.3705859 -0.5873774 
#> var:  0.02464385 
#> 
#> irregular 
#> 
#> var:  0.4143983 
#> 
#> 
#> Diagnostics
#> Relative contribution of the components to the stationary
#> portion of the variance in the original series,
#> after the removal of the long term trend (in %)
#> 
#>            Component
#>  cycle         2.744
#>  seasonal     92.928
#>  irregular     1.359
#>  calendar      0.850
#>  others        0.650
#>  total        98.532
#> 
#> Residual seasonality tests
#>                 P.value
#>  seas.ftest.i         1
#>  seas.ftest.sa        1
#>  seas.qstest.i        1
#>  seas.qstest.sa       1
#>  td.ftest.i           1
#>  td.ftest.sa          1
#> 
#> 
#> Final
#> Last values
#>          series       sa    trend      seas       irr
#> Sep 2016 1281.7 1319.916 1333.766 0.9710470 0.9896152
#> Oct 2016 1304.3 1331.621 1336.914 0.9794826 0.9960409
#> Nov 2016 1389.7 1340.670 1342.369 1.0365713 0.9987343
#> Dec 2016 2130.4 1372.032 1346.216 1.5527331 1.0191772
#> Jan 2017 1271.0 1356.615 1344.361 0.9368909 1.0091147
#> Feb 2017  999.0 1317.134 1339.984 0.7584648 0.9829477
#> Mar 2017 1227.2 1324.510 1340.040 0.9265313 0.9884107
#> Apr 2017 1309.3 1352.401 1344.225 0.9681300 1.0060826
#> May 2017 1378.0 1344.668 1348.648 1.0247886 0.9970483
#> Jun 2017 1369.7 1354.065 1352.881 1.0115470 1.0008749
#> Jul 2017 1286.3 1368.888 1356.032 0.9396681 1.0094804
#> Aug 2017 1233.2 1344.549 1357.892 0.9171851 0.9901738

Created on 2024-04-04 with reprex v2.1.0

@AQLT
Copy link
Contributor

AQLT commented Apr 4, 2024

On this subject my opinion is that the default print output is too long and complicated for a simple use. I would rather propose a huge simplification for the print method (for exemple only keeping the RegARIMA coefficients) and a detailed output with summary() functions. Below an example of a simplify print option.

#> Method: TRAMO-SEATS
#> Log-transformation: yes 
#> SARIMA model:  (0,1,1) (0,1,1)
#> 
#> SARIMA coefficients:
#>  theta(1) btheta(1)
#>  -0.53263  -0.68006
#> Regression model:
#>    monday tuesday wednesday thursday  friday saturday      lp AO (2000-06-01)
#>  -0.00235 0.00533  -0.00126  0.00937 0.00515  0.00183 0.04201         0.21634
#>  AO (2000-09-01)
#>          0.12194

Concerning model span and estimation span it's more a compromise between clarity and completeness: to what extent do we want to recall the specifications? For example, do we want to distinguish between atypical points imposed by the user and those detected automatically?

@TanguyBarthelemy
Copy link
Contributor Author

related to rjdverse/rjd3x13#45

@TanguyBarthelemy
Copy link
Contributor Author

TanguyBarthelemy commented Aug 19, 2024

Thank you very much @AQLT for your PR that improves a lot the information available for the user (with new summary()).
Concerning the span, I know that @annasmyk was very attached to it.
So we'll certainly be doing a PR in this direction to add this information to the summary.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants