-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathneighbour_utils.py
704 lines (515 loc) · 27.6 KB
/
neighbour_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
#!/usr/local/sci/bin/python
#*****************************
#
# Detect outliers from station and neighbour
#
#
#************************************************************************
# SVN Info
#$Rev:: 129 $: Revision of last commit
#$Author:: rdunn $: Author of last commit
#$Date:: 2017-08-15 10:02:07 +0100 (Tue, 15 Aug 2017) $: Date of last commit
#************************************************************************
import numpy as np
import scipy as sp
import math
import os
import gc
# RJHD routines
import qc_utils as utils
import netcdf_procs as ncdfp
from set_paths_and_vars import *
N_NEIGHBOURS = 10
UNFLAG_COL_DICT = {"spike":{"temperatures":27 ,"dewpoints":28, "slp":29},\
"climatological":{"temperatures":24 ,"dewpoints":25, "slp":26},\
"odd":{"temperatures":54 ,"dewpoints":55, "slp":57},\
"gap":{"slp":7},\
"dpd":{"dewpoints":31}}
#*******************************************************
def get_neighbour_parameters(station_info):
'''
Return two big symmetrical arrays of the station separations and bearings
'''
distances = np.zeros([len(station_info),len(station_info)])
angles = np.zeros([len(station_info),len(station_info)])
all_lats = np.array(station_info[:,1], dtype=float)
all_lons = np.array(station_info[:,2], dtype=float)
for st, stat in enumerate(station_info):
distances[st,:], angles[st,:] = utils.get_dist_and_bearing([all_lats[st],all_lons[st]],[all_lats,all_lons])
distances[st,st] = 0. # by hand set the diagonal to zero
angles[st,st] = 0. # by hand set the diagonal to zero
return distances, angles # get_neighbour_parameters
#*******************************************************
def get_neighbours(station_loc, st_elev, distances, bearings, elevations, sep_limit = 500., elev_limit = 300.):
'''
Get the neighbours for the station using distance, angles and elevations
Will return 10 or less neighbours.
:param int station_loc: sequence number of station
:param float st_elev: station elevation
:param array distances: distances of all other stations
:param array bearings: bearings of all other stations
:param array elevations: elevations of all other stations
:param float sep_limit: separation limit (default 500km)
:param float elev_limit: elevation limit (default 300m)
:returns: final set of neighbours as numbers in station list
'''
# get bearings into quadrants to make searching easier
quadrants = np.zeros(bearings.shape)
for a,angle in enumerate([270,180,90,0]):
locs = np.where((bearings >= angle) & (bearings < angle+90.))
quadrants[locs] = a+1
# start by sorting by distance
ordering = np.argsort(distances)
neighbour_locations = np.array([], dtype = int)
neighbour_quadrants = np.array([])
for index in ordering:
if index == station_loc:
# don't choose itself!
continue
# if within range of distance and elevation
if distances[index] <= sep_limit:
if np.abs(elevations[index] - st_elev) <= elev_limit:
neighbour_locations=np.append(neighbour_locations, index)
neighbour_quadrants = np.append(neighbour_quadrants, quadrants[index]) # combine into one data structure
# if have more than 10, see if angularly spread
if len(neighbour_locations) >= N_NEIGHBOURS:
locs1 = neighbour_locations[neighbour_quadrants == 1]
locs2 = neighbour_locations[neighbour_quadrants == 2]
locs3 = neighbour_locations[neighbour_quadrants == 3]
locs4 = neighbour_locations[neighbour_quadrants == 4]
# if at least two per quadrant then stop looking
if len(locs1) >= 2 and len(locs2) >= 2 and len(locs3) >= 2 and len(locs4) >= 2:
break
# if have more than 10
if len(neighbour_locations) >= N_NEIGHBOURS:
# now go through to ensure have only 10, and two per quadrant
final_locs = np.concatenate((locs1[:2], locs2[:2], locs3[:2], locs4[:2]), axis = 0).reshape(-1)
# and add the rest in order of distance
for index in neighbour_locations:
if index not in final_locs:
final_locs = np.append(final_locs, index)
if len(final_locs) == N_NEIGHBOURS:
break
return final_locs
# else just return the ones found
else:
return neighbour_locations # get_neighbours
#*******************************************************
def get_all_neighbours(station_loc, st_elev, distances, bearings, elevations, sep_limit = 500., elev_limit = 300., max_neighbours = 20):
'''
Get the neighbours for the station using distance, angles and elevations
Returns all neighbours within distance and elevation ranges
:param int station_loc: sequence number of station
:param float st_elev: station elevation
:param array distances: distances of all other stations
:param array bearings: bearings of all other stations
:param array elevations: elevations of all other stations
:param float sep_limit: separation limit (default 500km)
:param float elev_limit: elevation limit (default 300m)
:param int max_neighbours: maximum number to return (default 50)
:returns: final set of neighbours as numbers in station list
'''
# get bearings into quadrants to make searching easier
quadrants = np.zeros(bearings.shape)
for a,angle in enumerate([270,180,90,0]):
locs = np.where((bearings >= angle) & (bearings < angle+90.))
quadrants[locs] = a+1
# start by sorting by distance
ordering = np.argsort(distances)
neighbour_locations = np.array([], dtype = int)
neighbour_quadrants = np.array([])
for index in ordering:
if index == station_loc:
# don't choose itself!
continue
# if within range of distance and elevation
if distances[index] <= sep_limit:
if np.abs(elevations[index] - st_elev) <= elev_limit:
neighbour_locations=np.append(neighbour_locations, index)
neighbour_quadrants = np.append(neighbour_quadrants, quadrants[index]) # combine into one data structure
return neighbour_locations[:max_neighbours], neighbour_quadrants[:max_neighbours] # get_all_neighbours
#*******************************************************
def hourly_daily_anomalies(timeseries, obs_per_day = 6):
'''
Format the time series to get allow for sensible correlations
- Process into 24h x N_days
- Obtain daily average and hence hourly anomalies from daily average (removes annual cycle)
- Obtain hourly average of anomalies to get double-anomalies (removes diurnal cycle)
:param array timeseries: data to be processed in 1-D array
:param int obs_per_day: number of observations per 24hr to get a daily average to process (default = 6)
:returns: anomalies - timeseries with removed annual and diurnal cycles.
'''
timeseries = timeseries.reshape((-1,24))
daily_mean = np.ma.mean(timeseries, axis = 1)
not_mask_count = timeseries.count(axis = 1)
daily_mean = np.ma.masked_where(not_mask_count < obs_per_day, daily_mean) # completeness check - only for correlations
hourly_anomalies = timeseries - np.ma.repeat(daily_mean, 24).reshape((-1,24)) # removed annual cycle
hourly_mean = np.ma.mean(hourly_anomalies, axis = 0)
anomalies = hourly_anomalies - np.tile(hourly_mean, timeseries.shape[0]).reshape((-1,24)) # removed diurnal cycle
return anomalies.ravel() # hourly_daily_anomalies
#*******************************************************
def select_neighbours(station, variable, neighbour_info, neighbours, neighbour_distances, neighbour_quadrants, data_locs, datastart, dataend, logfile, diagnostics = False, plots = False):
'''
From the list of nearby stations select the ones which will be good neighours for the test.
Select on basis of correlation, overlap of data points and bearing (quadrants)
:param object station: station object
:param str variable: which variable to proces
:param array neighbour_info: array of ID, lat, lon and elev
:param array neighbours: which station sequence numbers are the nearby stations
:param array neighbour_distances: distances to nearby stations
:param array neighbour_quadrants: bearings to nearby stations (in 90deg bins)
:param array data_locs: path to data files
:param datetime datastart: start of data set
:param datetime dataend: end of data set
:param file logfile: logfile to store outputs
:param boolean diagnostics: output diagnostic information
:param boolean plots: make a plot
:returns: final_locs - array of station sequence numbers to use.
'''
# set up storage arrays
n_correlations = np.zeros(len(neighbours))
n_distances = np.zeros(len(neighbours))
n_quadrants = np.zeros(len(neighbours))
n_overlaps = np.zeros(len(neighbours))
combined_score = np.zeros(len(neighbours))
# get station data
st_var = getattr(station, variable)
st_anomalies = hourly_daily_anomalies(st_var.data[:])
# go through initial list and extract correlations and overlaps
for nn, nn_loc in enumerate(neighbours):
n_details = neighbour_info[nn]
neigh = utils.Station(n_details[0], float(n_details[1]), float(n_details[2]), float(n_details[3]))
ncdfp.read(os.path.join(NETCDF_DATA_LOCS, "hadisd.{}_19310101-{}_{}_internal.nc".format(LONG_VERSION, END_TIME, station.id)), neigh, [variable], diagnostics = diagnostics, read_input_station_id = False)
dummy = utils.create_fulltimes(neigh, [variable], datastart, dataend, [], do_input_station_id = False)
# get the correlations of data to this neighbour
neigh_var = getattr(neigh, variable)
neigh_anomalies = hourly_daily_anomalies(neigh_var.data[:])
# correlation = np.ma.corrcoef(neigh_var.data, st_var.data)[1,0]
correlation = np.ma.corrcoef(neigh_anomalies, st_anomalies)[1,0]
overlap = len(np.where(np.logical_or(neigh_var.data.mask, st_var.data.mask) == False)[0])/float(len(st_var.data.compressed()))
if not math.isnan(correlation):
n_correlations[nn] = correlation
n_overlaps[nn] = overlap
combined_score[nn] = correlation + overlap
n_distances[nn] = neighbour_distances[nn]
n_quadrants[nn] = neighbour_quadrants[nn]
# clear up to save memory
del dummy
del neigh_var
del neigh_anomalies
gc.collect()
# sort in order of the combination of correlation and overlap
sort_order = np.argsort(combined_score)[::-1]
# and select the best 10
# final_selection = neighbours[sort_order][:10]
# sort out the quadrants
locs1 = neighbours[sort_order][n_quadrants[sort_order] == 1]
locs2 = neighbours[sort_order][n_quadrants[sort_order] == 2]
locs3 = neighbours[sort_order][n_quadrants[sort_order] == 3]
locs4 = neighbours[sort_order][n_quadrants[sort_order] == 4]
final_locs = np.concatenate((locs1[:2], locs2[:2], locs3[:2], locs4[:2]), axis = 0).reshape(-1)
# and add the rest in order of combined score
for index in neighbours[sort_order]:
if index not in final_locs:
final_locs = np.append(final_locs, index)
if len(final_locs) == N_NEIGHBOURS:
break
# output table showing distances, correlations, overlaps, the combined score and which ones were selected
if plots or diagnostics:
print "{:14s} {:10s} {:10s} {:10s} {:10s} {:10s} {:10s} {:10s}".format("Neighbour","Distance","Elevation", "Correl'n", "Overlap", "Combined", "Quadrant","Selected")
else:
logfile.write("{:14s} {:10s} {:10s} {:10s} {:10s} {:10s} {:10s} {:10s}\n".format("Neighbour","Distance","Elevation", "Correl'n", "Overlap", "Combined", "Quadrant","Selected")
)
selected_correlations = []
selected_overlaps = []
for nn, nn_loc in enumerate(neighbours[sort_order]):
selected = ""
if nn_loc in final_locs:
selected = "Y"
if plots:
selected_correlations += [n_correlations[sort_order[nn]]]
selected_overlaps += [n_overlaps[sort_order[nn]]]
neigh_details = neighbour_info[sort_order][nn]
if plots or diagnostics:
print "{:14s} {:10.1f} {:10.1f} {:10.5f} {:10.3f} {:10.3f} {:10.0f} {:10s}".format(neigh_details[0], n_distances[sort_order][nn], float(neigh_details[3]), n_correlations[sort_order][nn], n_overlaps[sort_order][nn], combined_score[sort_order][nn], n_quadrants[sort_order][nn], selected)
else:
logfile.write("{:14s} {:10.1f} {:10.1f} {:10.5f} {:10.3f} {:10.3f} {:10.0f} {:10s}\n".format(neigh_details[0], n_distances[sort_order][nn], float(neigh_details[3]), n_correlations[sort_order][nn], n_overlaps[sort_order][nn], combined_score[sort_order][nn], n_quadrants[sort_order][nn], selected))
# plot of correlations and overlaps, with selected stations highlighted
if plots:
import matplotlib.pyplot as plt
plt.clf()
plt.plot(n_correlations, n_overlaps, 'bo')
plt.plot(selected_correlations, selected_overlaps, 'ro')
plt.xlabel("correlations")
plt.ylabel("data overlap")
plt.title("{} - {}".format(station.id, variable))
plt.show()
return final_locs # select_neighbours
#*******************************************************
def plot_target_neigh_diffs_dist(differences, iqr):
'''
Plot the distribution of target-neighbour differences
:param array differences: masked difference array
:param float iqr: inter quartile range of differences
:returns:
'''
import matplotlib.pyplot as plt
plt.clf()
bins, bincenters = utils.create_bins(differences.compressed(), 1.0)
hist, binEdges = np.histogram(differences.compressed(), bins=bins)
plot_hist = np.array([float(x) if x != 0 else 1e-1 for x in hist])
plt.step(bincenters, plot_hist, 'k-', label = 'observations', where='mid')
fit = utils.fit_gaussian(bincenters, hist, max(hist), mu=np.mean(differences.compressed()), sig = np.std(differences.compressed()))
plot_gaussian = utils.gaussian(bincenters, fit)
plt.plot(bincenters, plot_gaussian, 'b-', label = 'Gaussian fit')
plt.axvline(5.*iqr, c = 'r')
plt.axvline(-5.*iqr, c = 'r')
print "only shows lowest of monthly IQRs"
plt.ylabel("Frequency")
plt.gca().set_yscale('log')
plt.ylim([0.1,2*max(hist)])
plt.show()
return # plot_target_neigh_diffs_dist
#*******************************************************
def detect(station, neighbour, variable, flags, neighbour_count, start, end, distance = 0, diagnostics = False, plots = False):
'''
Detect which observations are outliers
:param MetVar station: station object (target)
:param MetVar neighbour: station object (neighbour)
:param string variable: which variable to process
:param array flags: array to store how many neighbours thing each obs is bad
:param array neighbour_count: how many neighbours present at each obs
:param datetime start: start of dataset
:param datetime end: end of dataset
:param int distance: separation of target and neighbour
:param bool diagnostics: extra output
:param bool plots: make figures
:returns: None
'''
FILTERING_FLAG_COL = {"temperatures":[0,1,4,5,8,12,16,20,27,41,44,58],
"dewpoints":[0,2,4,6,8,9,13,17,21,28,30,31,32,42,45,59],
"slp":[0,3,4,7,11,15,19,23,29,43,46,60],
"windspeeds":[0,4,10,14,18,22,56,62,63,64]} # not used, but ready for it.
st_var = getattr(station, variable)
neigh_var = getattr(neighbour, variable)
# filter by flags - not all (no Climatological [24,25], or Odd cluster [54,55,56,57]), T record check not in D,
total_flags = np.sum(station.qc_flags[:,FILTERING_FLAG_COL[variable]], axis = 1)
st_filtered = np.ma.masked_where(total_flags == 1, st_var.data)
neigh_filtered = np.ma.masked_where(total_flags == 1, neigh_var.data)
# match the observation times
match = np.where(np.logical_and((st_filtered.data != st_var.mdi), (neigh_filtered.data != neigh_var.mdi)))
month_ranges = utils.month_starts_in_pairs(start, end).reshape(-1,12,2) # in year-long sets of pairs.
if len(match[0]) >= 100:
neighbour_count[match] += 1 # number of neighbours with data present
differences = np.ma.zeros(len(st_filtered))
differences.fill(st_var.mdi)
differences.mask = True
differences[match] = st_filtered.data[match] - neigh_filtered.data[match]
differences.mask[match] = False
all_iqrs = np.zeros(len(differences))
# get monthly IQR values
for month in range(12):
this_month, dummy1, dummy2 = utils.concatenate_months(month_ranges[:,month,:], differences, hours = False)
if len(this_month.compressed()) > 4:
iqr = utils.IQR(this_month.compressed())
if iqr <= 2.: iqr = 2.
else:
iqr = 2.
# and copy back into the array
for year in month_ranges[:,month,:]:
all_iqrs[year[0]:year[1]] = iqr
if plots:
plot_target_neigh_diffs_dist(differences, min(all_iqrs))
dubious = np.ma.where(np.ma.abs(differences) > 5. * all_iqrs)
if len(dubious[0]) >= 1.:
if variable == "slp":
# check if they are storms
positive = np.ma.where(differences > 5. * iqr)
negative = np.ma.where(differences < -5. * iqr)
# if majority negative (2/3) and separation > 100
if (distance > 100.) and (float(len(positive[0]))/len(dubious[0]) < 0.333):
if len(positive[0]) > 0:
flags[positive] += 1
if len(negative[0]) > 0:
neighbour_count[match] -= 1
else:
flags[dubious] += 1
else:
flags[dubious] += 1
return # detect
#*******************************************************
def plot_outlier(station, variable, outlier_locs, all_data, datastart):
'''
Plot the outlier location (either to flag or unflag) with the target and all neighbours
:param MetVar station: station object
:param str variable: variable to process
:param array outlier_locs: locations which are outliers to plot
:param array all_data: all data from neighbours for plotting
:param datetime datastart: start of dataset
:returns: None
'''
import matplotlib.pyplot as plt
import datetime as dt
YLABELS = {"temperatures":"Temperature (C)", "dewpoints":"Dewpoints (C)", "slp":"SLP (hPa)", "windspeeds":"Wind Speed (m/s)"}
extra = 48 # hours
indata = getattr(station, variable).data
for location in outlier_locs:
plot_times = utils.times_hours_to_datetime(station.time.data[location-extra: location+extra], datastart)
plt.clf()
plt.plot(plot_times, indata[location-extra:location+extra], 'bo', ls='-')
plt.plot(plot_times[extra], indata[location], 'ro', markersize=10)
for nn in range(all_data.shape[0]):
plt.plot(plot_times,all_data[nn,location-extra:location+extra] , c='0.5', ls='-')
plt.ylabel(YLABELS[variable])
plt.title("{:s} {:s}".format(station.id,dt.datetime.strftime(plot_times[extra], "%d/%m/%Y")))
plt.show()
return # plot_outlier
#*******************************************************
def unflagging_locs(differences, flags, neigh_count, dpd_count = [], flag_value = 1):
'''
Return locations where flags to be set to zero
Currently has deliberate bug, but this is to match IDL
:param array differences: normalised differences of target - median of neighbours
:param array flags: flag array to check where to unset
:param array neigh_count: number of neighbour obs at each timestamp
:param list dpd_count: number of DPD flags set at each timestamp
:param int flag_value: can use to look for tentative flags
:returns:
unset_locs - list of locations to unset
'''
sufficient_neighbours, = np.where(neigh_count >= 3)
if len(sufficient_neighbours) > 0:
flag_locs, = np.where(flags[sufficient_neighbours] == flag_value)
if len(flag_locs) > 0:
if dpd_count != []:
# if at least 2/3 of neighbours also have DPD flag set, then unset these
dpd_proportion = dpd_count/neigh_count
unset_locs = np.where(dpd_proportion[sufficient_neighbours][flag_locs] >= 2./3.)
else:
unset_locs = np.where(differences[sufficient_neighbours][flag_locs] <= 4.5)
if len(unset_locs) > 0:
# have some values that fall within 4.5MAD of median or where DPD is
# present in sufficiently many neighbours, remove these flags
return sufficient_neighbours[flag_locs][unset_locs]
return [] # unflagging
#*******************************************************
def bn_median(masked_array, axis=None):
"""
https://github.com/astropy/ccdproc/blob/122cdbd5713140174f057eaa8fdb6f9ce03312df/docs/ccdproc/bottleneck_example.rst
Perform fast median on masked array
Parameters
masked_array : `numpy.ma.masked_array`
Array of which to find the median.
axis : int, optional
Axis along which to perform the median. Default is to find the median of
the flattened array.
"""
import numpy as np
import bottleneck as bn
data = masked_array.filled(fill_value=np.NaN)
med = bn.nanmedian(data, axis=axis)
# construct a masked array result, setting the mask from any NaN entries
return np.ma.array(med, mask=np.isnan(med))
#*******************************************************
def median_absolute_deviation(a, axis=None):
"""from astropy.stats, converted to use np.ma - 13-Oct-2014 RJHD
Compute the median absolute deviation.
Returns the median absolute deviation (MAD) of the array elements.
The MAD is defined as ``median(abs(a - median(a)))``.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : int, optional
Axis along which the medians are computed. The default (axis=None)
is to compute the median along a flattened version of the array.
Returns
-------
median_absolute_deviation : ndarray
A new array holding the result. If the input contains
integers, or floats of smaller precision than 64, then the output
data-type is float64. Otherwise, the output data-type is the same
as that of the input.
Examples
--------
This will generate random variates from a Gaussian distribution and return
the median absolute deviation for that distribution::
>>> from astropy.stats import median_absolute_deviation
>>> from numpy.random import randn
>>> randvar = randn(10000)
>>> mad = median_absolute_deviation(randvar)
See Also
--------
numpy.median
"""
a = np.ma.array(a, copy=False)
a_median = bn_median(a, axis=axis)
# re-broadcast the output median array to subtract it
if axis is not None:
a_median = np.ma.expand_dims(a_median, axis=axis)
# calculated the median average deviation
return bn_median(np.ma.abs(a - a_median), axis=axis) # median_absolute_deviation
#*******************************************************
def do_unflagging(station, variable, all_data, reporting_accuracies, neigh_count, dpd_flags, FLAG_COL_DICT, start, logfile, plots = False, diagnostics = False):
'''
Set up and run the unflagging process for the specified tests
:param MetVar station: station object
:param string variable: variable to process
:param array all_data: array containing all neighbour obs for full time period
:param array reporting accuracies: reporting accuracy for each neighbour
:param array neigh_count: number of neighbours with data at each time stamp
:param array dpd_flags: number of neighbours that have DPD set at each time stamp
:param dict FLAG_COL_DICT: look up dictionary to
:param datetime start: start of dataset
:param file logfile: logfile to store outputs
:param bool plots: do plots
'''
# unflagging using neighbours
'''This is slow - np.ma.median is known to be slow
https://github.com/astropy/ccdproc/issues/74
https://github.com/astropy/ccdproc/blob/122cdbd5713140174f057eaa8fdb6f9ce03312df/docs/ccdproc/bottleneck_example.rst'''
mean_of_neighbours = bn_median(all_data, axis = 0)
std_of_neighbours = median_absolute_deviation(all_data, axis = 0)
# find where the spread of neighbour observations is less than 1/2
# of maximum reporting accuracy
std_of_neighbours[std_of_neighbours < 0.5*max(reporting_accuracies)] = 0.5*max(reporting_accuracies)
# create series of normalised differences of obs from neighbour mean
st_var = getattr(station, variable)
normalised_differences = np.ma.abs(st_var.data - mean_of_neighbours)/std_of_neighbours
for qc_test in ["climatological","gap","odd","dpd"]:
if qc_test == "dpd" and variable == "dewpoints":
flags = station.qc_flags[:, UNFLAG_COL_DICT[qc_test][variable]]
unset_locs = unflagging_locs(normalised_differences, flags, neigh_count, dpd_count = dpd_flags)
elif qc_test == "dpd":
# only unflag DPD on dewpoints
continue
elif qc_test == "gap" and variable != "slp":
# only unflag gap check on slp observations
continue
else:
flags = station.qc_flags[:, UNFLAG_COL_DICT[qc_test][variable]]
if qc_test == "gap" or qc_test == "climatological":
# only tentative flags
unset_locs = unflagging_locs(normalised_differences, flags, neigh_count, flag_value = 2)
else:
unset_locs = unflagging_locs(normalised_differences, flags, neigh_count)
if len(unset_locs) > 0:
station.qc_flags[unset_locs, UNFLAG_COL_DICT[qc_test][variable]] = 0
# need to unflag attribute if and only if no other flags are set
subset_flags = station.qc_flags[:, FLAG_COL_DICT[variable]]
total_flags = np.sum(subset_flags[unset_locs, :], axis = 1)
clean_locs = np.where(total_flags == 0)
st_var.flags[unset_locs[clean_locs]] = 0
# and print result
if plots or diagnostics:
utils.print_flagged_obs_number(logfile, "Unflagging "+qc_test, variable, len(unset_locs), noWrite = True)
else:
utils.print_flagged_obs_number(logfile, "Unflagging "+qc_test, variable, len(unset_locs))
if plots:
if len(unset_locs) > 0:
plot_outlier(station, variable, unset_locs, all_data, start)
station = utils.append_history(station, "Unflagging - "+variable)
return # do_unflagging
#************************************************************************
if __name__ == "__main__":
print "Utilities for neighbour check"