-
Notifications
You must be signed in to change notification settings - Fork 2
/
Euler18.py
86 lines (76 loc) · 2.6 KB
/
Euler18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
"""
Maximum path sum I
Problem 18
By starting at the top of the triangle below and moving to adjacent numbers on
the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by
trying every route. However, Problem 67, is the same challenge with a triangle
containing one-hundred rows; it cannot be solved by brute force, and requires
a clever method! ;o)
Answer: 1074
Ricky Kwok, [email protected], 2014-10-24
"""
def get_max_path(tri_array, depth):
""" Returns the maximum path for each node by computing the maximum
path of each of the two children starting from bottom up. """
max_path = [0] * len(tri_array)
max_path[depth * (depth-1) / 2: depth * (depth+1) / 2] = tri_array[depth * (depth-1) / 2: depth * (depth + 1) / 2]
for r in range(depth - 1, 0, -1):
for c in range(r):
# Iterates from the bottom-most row, left to rigth
max_child = max(max_path[r * (r + 1) / 2 + c], max_path[r * (r + 1) / 2 + c + 1])
max_path[r * (r - 1) / 2 + c] = tri_array[r * (r - 1) / 2 + c] + max_child
return max(max_path)
def triangle_to_array(triangle):
""" Converts the string provided into an array of ints."""
nodes = list(triangle.split("\n"))
depth, row, tri_array = 15, 0, []
for node in nodes:
integer, col = node.split(" "), 0
row += 1
for elt in integer:
elt = int(elt)
tri_array.append(elt)
col += 1
return get_max_path(tri_array, depth)
def main():
triangle = """75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23"""
print triangle_to_array(triangle)
if __name__ == "__main__":
main()