Skip to content

Latest commit

 

History

History
112 lines (81 loc) · 4.54 KB

README.md

File metadata and controls

112 lines (81 loc) · 4.54 KB

Visual-Graph-Memory

This is an official GitHub Repository for paper "Visual Graph Memory with Unsupervised Representation for Visual Navigation", which is accepted as a regular paper (poster) in ICCV 2021.

Setup

Requirements

The source code is developed and tested in the following setting.

  • Python 3.6
  • pytorch 1.4~1.7
  • habitat-sim 0.1.7 (commit version: ee75ba5312fff02aa60c04f0ad0b357452fc2edc)
  • habitat 0.1.7 (commit version: 34a4042c03d6596f1d614faa4891868ddaf81c04)

Please refer to habitat-sim and habitat-lab for installation.

To set the environment, run:

pip install -r requirements.txt

Habitat Data (Gibson, MP3D) Setup

Most of the scripts in this code build the environments assuming that the gibson/mp3d dataset is in habitat-lab/data/ folder.

The recommended folder structure of habitat-api (or habitat-lab):

habitat-api (or habitat-lab)
  └── data
      └── datasets
      │   └── pointnav
      │       └── gibson
      │           └── v1
      │               └── train
      │               └── val
      └── scene_datasets
          └── gibson_habitat
              └── *.glb, *.navmeshs  

otherwise, you should edit the data path in these lines.

VGM Demonstration

To visualize the VGM generation, run:

python vgm_demo.py --gpu 0 --num-proc 2

This command will show the online VGM generation during random exploration. The rendering window will show the generated VGM and the observations as follows:

vgm_demo_1 vgm_demo_1

Note that the top-down map and pose information are only used for visualization, not for the graph generation.

Imitation Learning

  1. Data generation
    python collect_IL_data.py --ep-per-env 200 --num-procs 4 --split train --data-dir /path/to/save/data
    
    This will generate the data for imitation learning. You can find some examples of the collected data in IL_data folder, and look into them with show_IL_data.ipynb.
  2. Training
    python train_bc.py --config configs/vgm.yaml --stop --gpu 0
    
  3. Evaluation

Reinforcement Learning

The reinforcement learning code is highly based on habitat-lab/habitat_baselines. To train the agent with reinforcement learning (PPO), run:

python train_rl.py --config configs/vgm.yaml --version EXPERIMENT_NAME --diff hard --render --stop --gpu 0

Evaluation

We provide evaluation code and the pretrained model.

python evaluate_random.py --config configs/vgm.yaml --version-name test --eval-ckpt VGM_ILRL.pth --stop --diff hard

You can use "evaluate_dataset.py" to evaluate VGM on public image-goal nav dataset (https://github.com/facebookresearch/image-goal-nav-dataset)

git clone https://github.com/facebookresearch/image-goal-nav-dataset.git
python evaluate_dataset.py --config configs/vgm.yaml --version-name test --eval-ckpt VGM_ILRL.pth --stop --diff hard

In the above dataset, the provided pretrained model shows following performances.

Easy(SR) Easy(SPL) Medium(SR) Medium(SPL) Hard(SR) Hard(SPL) Overall(SR) Overall(SPL)
0.76 0.40 0.76 0.56 0.62 0.49 0.71 0.48

Also, our VGM model shows following performances on NRNS Image-Goal Navigation dataset (https://meerahahn.github.io/nrns/data)

- Straight

Easy(SR) Easy(SPL) Medium(SR) Medium(SPL) Hard(SR) Hard(SPL) Overall(SR) Overall(SPL)
0.81 0.54 0.82 0.70 0.67 0.54 0.77 0.60

- Curved

Easy(SR) Easy(SPL) Medium(SR) Medium(SPL) Hard(SR) Hard(SPL) Overall(SR) Overall(SPL)
0.81 0.46 0.79 0.60 0.62 0.47 0.74 0.51