-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
375 lines (297 loc) · 14.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tensorflow as tf
from tensorflow.keras.layers.experimental import preprocessing
from tensorflow.keras import layers
from tensorflow.keras import models
from hyperparams import _DATA_DIR_, _BINARIES_DIR_, _UNKNOWN_CLASS_, _SILENCE_CLASS_, _MODELS_DIR_, _TASKS_
from input_pipeline import *
from metrics import *
from custom_layers import *
def simple_attention_rnn(ds, output_classes, model_suffix, mfccs=True):
for s, _ in ds.take(1):
input_shape = s.shape[1:]
print('Input shape:', input_shape)
X_input = tf.keras.Input(input_shape)
X = RandomNoiseAugment()(X_input)
if mfccs:
X = MFCC()(X)
else:
X = LogMelSpectrogram()(X)
X = layers.Lambda(lambda x : x[:,:,1:,:], name="remove_energies")(X)
X = layers.BatchNormalization(axis=-1)(X)
X = SpecAugment()(X)
X = layers.Lambda(lambda x : x[...,-1], name="squeeze_channel_dimension")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU")(X)
last_out = layers.Lambda(lambda x: x[:,-1,:])(X)
Q = layers.Dense(128)(last_out)
Q = layers.Lambda(lambda x: tf.expand_dims(x, 1))(Q)
weighted_seq, att_ws = layers.Attention()([Q, X], return_attention_scores=True)
weighted_seq = layers.Lambda(lambda x: x[:,0,:])(weighted_seq)
O = layers.Dense(128, activation='relu')(weighted_seq)
O = layers.Dense(64, activation='relu')(O)
O = layers.Dense(len(output_classes), name="out_layer")(O)
att_model = tf.keras.Model(inputs = [X_input], outputs=[O,att_ws], name="simple_attention_rnn_"+model_suffix)
return att_model
def attention_rnn_andreade(ds, output_classes, model_suffix, mfccs=True):
"""Neural attention model proposed in de Andreade et al. 2018"""
for s, _ in ds.take(1):
input_shape = s.shape[1:]
print('Input shape:', input_shape)
X_input = tf.keras.Input(input_shape)
X = RandomNoiseAugment()(X_input)
if mfccs:
X = MFCC()(X)
else:
X = LogMelSpectrogram()(X)
X = layers.Lambda(lambda x : x[:,:,1:,:], name="remove_energies")(X)
#perform feature normalization for the current batch
X = layers.BatchNormalization()(X)
X = SpecAugment()(X)
# CNN part
X = layers.Conv2D(10, (5, 1), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
X = layers.Conv2D(1, (5, 1), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
# Recurrent Part
X = layers.Lambda(lambda x : x[...,-1], name="squeeze_channel_dimension")(X)
X = layers.Bidirectional(layers.LSTM(units=64, return_sequences=True), name="BidirectionalLSTM")(X)
X = layers.Bidirectional(layers.LSTM(units=64, return_sequences=True), name="BidirectionalLSTM2")(X)
last_out = layers.Lambda(lambda x: x[:,-1,:])(X)
# Self-Attention
Q = layers.Dense(128)(last_out)
Q = layers.Lambda(lambda x: tf.expand_dims(x, 1))(Q)
weighted_seq, att_ws = layers.Attention()([Q, X], return_attention_scores=True)
weighted_seq = layers.Lambda(lambda x: x[:,0,:])(weighted_seq)
O = layers.Dense(64, activation='relu')(weighted_seq)
O = layers.Dense(len(output_classes), name="out_layer")(O)
att_model = tf.keras.Model(inputs = [X_input], outputs=[O,att_ws], name="andreade_original_"+model_suffix)
return att_model
def resnet_andreade(ds, output_classes, model_suffix, n_res_blocks, mfccs=True):
def residual_block(X_input):
#Residual block
X = layers.Conv2D(10, (10, 1), padding='same')(X_input)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
X = layers.Conv2D(5, (5, 1), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
out = layers.Add()([X, X_input])
return out
for s, _ in ds.take(1):
input_shape = s.shape[1:]
print('Input shape:', input_shape)
X_input = tf.keras.Input(input_shape)
X = RandomNoiseAugment()(X_input)
if mfccs:
X = MFCC()(X)
else:
X = LogMelSpectrogram()(X)
X = layers.Lambda(lambda x : x[:,:,1:,:], name="remove_energies")(X)
#perform feature normalization for the current batch
X = layers.BatchNormalization()(X)
X = SpecAugment()(X)
# Residual CNN part
X = layers.Conv2D(5, (5, 1), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
for i in range(n_res_blocks):
X = residual_block(X)
X = layers.Conv2D(1, (5, 1), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
# AVGPOOL
X = tf.keras.layers.AveragePooling2D(pool_size=(2,1))(X)
# Recurrent Part
X = layers.Lambda(lambda x : x[...,-1], name="squeeze_channel_dimension")(X)
X = layers.Bidirectional(layers.LSTM(units=64, return_sequences=True), name="BidirectionalLSTM")(X)
X = layers.Bidirectional(layers.LSTM(units=64, return_sequences=True), name="BidirectionalLSTM2")(X)
last_out = layers.Lambda(lambda x: x[:,-1,:])(X)
# Self-Attention
Q = layers.Dense(128)(last_out)
Q = layers.Lambda(lambda x: tf.expand_dims(x, 1))(Q)
weighted_seq, att_ws = layers.Attention()([Q, X], return_attention_scores=True)
weighted_seq = layers.Lambda(lambda x: x[:,0,:])(weighted_seq)
O = layers.Dense(64, activation='relu')(weighted_seq)
O = layers.Dense(len(output_classes), name="out_layer")(O)
att_model = tf.keras.Model(inputs = [X_input], outputs=[O,att_ws], name="resnet_andreade_"+model_suffix)
return att_model
def attention_rnn_andreade_seq_query(ds, output_classes, model_suffix, mfccs=True, filter_w=5, filter_h=1):
"""Neural attention model proposed in de Andreade et al. 2018 with more queries. Also using GRU units
Motivation: we know that in encoder/decoder models for machine translation, relying only on the last state
of the encoder """
for s, _ in ds.take(1):
input_shape = s.shape[1:]
print('Input shape:', input_shape)
X_input = tf.keras.Input(input_shape)
X = RandomNoiseAugment()(X_input)
if mfccs:
X = MFCC()(X)
else:
X = LogMelSpectrogram()(X)
X = layers.Lambda(lambda x : x[:,:,1:,:], name="remove_energies")(X)
X = layers.BatchNormalization(axis=-1)(X)
X = SpecAugment()(X)
# CNN part
X = layers.Conv2D(10, (5, 1), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
X = layers.Conv2D(1, (5, 1), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
# Recurrent Part
X = layers.Lambda(lambda x : x[...,-1], name="squeeze_channel_dimension")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU2")(X)
# Self-Attention
# Q = layers.Dense(128)(last_out)
Q = layers.Dense(128)(X)
# Q = layers.Lambda(lambda x: tf.expand_dims(x, 1))(Q)
weighted_seq, att_ws = layers.Attention(use_scale=True)([Q, X], return_attention_scores=True)
X = layers.Bidirectional(layers.GRU(units=32), name="BidirectionalGRU3")(weighted_seq)
O = layers.Dense(64, activation='relu')(X)
O = layers.Dense(len(output_classes), name="out_layer")(O)
att_model = tf.keras.Model(inputs = [X_input], outputs=[O,att_ws], name = "andreade_seq_query_"+model_suffix)
return att_model
def andreade_seq_query_no_cnn(ds, output_classes, model_suffix, mfccs=True):
for s, _ in ds.take(1):
input_shape = s.shape[1:]
print('Input shape:', input_shape)
X_input = tf.keras.Input(input_shape)
X = RandomNoiseAugment()(X_input)
if mfccs:
X = MFCC()(X)
else:
X = LogMelSpectrogram()(X)
X = layers.Lambda(lambda x : x[:,:,1:,:], name="remove_energies")(X)
X = layers.BatchNormalization(axis=-1)(X)
X = SpecAugment()(X)
# Recurrent Part
X = layers.Lambda(lambda x : x[...,-1], name="squeeze_channel_dimension")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU2")(X)
# Self-Attention
# Q = layers.Dense(128)(last_out)
Q = layers.Dense(128)(X)
# Q = layers.Lambda(lambda x: tf.expand_dims(x, 1))(Q)
weighted_seq, att_ws = layers.Attention()([Q, X], return_attention_scores=True)
X = layers.Bidirectional(layers.GRU(units=32), name="BidirectionalGRU3")(weighted_seq)
O = layers.Dense(64, activation='relu')(X)
O = layers.Dense(len(output_classes), name="out_layer")(O)
att_model = tf.keras.Model(inputs = [X_input], outputs=[O,att_ws], name = "andreade_seq_query_no_CNN_"+model_suffix)
return att_model
def seq_query_mha_andreade(ds, output_classes, model_suffix, mfccs=True, n_heads=7, mha_encoding_dim=64, filter_w=5, filter_h=1):
for s, _ in ds.take(1):
input_shape = s.shape[1:]
print('Input shape:', input_shape)
X_input = tf.keras.Input(input_shape)
X = RandomNoiseAugment()(X_input)
if mfccs:
X = MFCC()(X)
else:
X = LogMelSpectrogram()(X)
X = layers.Lambda(lambda x : x[:,:,1:,:], name="remove_energies")(X)
X = layers.BatchNormalization(axis=-1)(X)
X = SpecAugment()(X)
# CNN part
X = layers.Conv2D(10, (filter_w, filter_h), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
X = layers.Conv2D(1, (filter_w, filter_h), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
# Recurrent Part
X = layers.Lambda(lambda x : x[...,-1], name="squeeze_channel_dimension")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU2")(X)
# last_out = layers.Lambda(lambda x: x[:,-1,:])(X)
# Self-Multi-Headed Attention
Q = layers.Dense(128)(X)
# Q = layers.Lambda(lambda x: tf.expand_dims(x, 1))(Q)
weighted_seq, att_ws = layers.MultiHeadAttention(num_heads=n_heads, key_dim=mha_encoding_dim)(Q, X, return_attention_scores=True)
X = layers.Bidirectional(layers.GRU(units=32), name="BidirectionalGRU3")(weighted_seq)
# weighted_seq = layers.Lambda(lambda x: x[:,0,:])(weighted_seq)
O = layers.Dense(64, activation='relu')(X)
O = layers.Dense(len(output_classes), name="out_layer")(O)
att_model = tf.keras.Model(inputs = [X_input], outputs=[O,att_ws], name = "seq_query_mha_"+model_suffix)
return att_model
def mha_andreade(ds, output_classes, model_suffix, mfccs=True, n_heads=7, mha_encoding_dim=64, filter_w=5, filter_h=1):
for s, _ in ds.take(1):
input_shape = s.shape[1:]
print('Input shape:', input_shape)
X_input = tf.keras.Input(input_shape)
X = RandomNoiseAugment()(X_input)
if mfccs:
X = MFCC()(X)
else:
X = LogMelSpectrogram()(X)
X = layers.Lambda(lambda x : x[:,:,1:,:], name="remove_energies")(X)
X = layers.BatchNormalization(axis=-1)(X)
X = SpecAugment()(X)
# CNN part
X = layers.Conv2D(10, (filter_w, filter_h), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
X = layers.Conv2D(1, (filter_w, filter_h), padding='same')(X)
X = layers.BatchNormalization()(X)
X = layers.Activation("relu")(X)
# Recurrent Part
X = layers.Lambda(lambda x : x[...,-1], name="squeeze_channel_dimension")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU")(X)
X = layers.Bidirectional(layers.GRU(units=64, return_sequences=True), name="BidirectionalGRU2")(X)
last_out = layers.Lambda(lambda x: x[:,-1,:])(X)
# Self-Multi-Headed Attention
Q = layers.Dense(128)(last_out)
Q = layers.Lambda(lambda x: tf.expand_dims(x, 1))(Q)
weighted_seq, att_ws = layers.MultiHeadAttention(num_heads=n_heads, key_dim=mha_encoding_dim)(Q, X, return_attention_scores=True)
# X = layers.Bidirectional(layers.GRU(units=32), name="BidirectionalGRU3")(weighted_seq)
weighted_seq = layers.Lambda(lambda x: x[:,0,:])(weighted_seq)
O = layers.Dense(64, activation='relu')(weighted_seq)
O = layers.Dense(len(output_classes), name="out_layer")(O)
att_model = tf.keras.Model(inputs = [X_input], outputs=[O,att_ws], name = "mha_andreade_"+model_suffix)
return att_model
def KWT(ds,
num_patches,
num_layers,
d_model,
num_heads,
mlp_dim,
output_classes,
model_suffix,
dropout=0.1,
mfccs=True):
for s, _ in ds.take(1):
input_shape = s.shape[1:]
print('Input shape:', input_shape)
X_input = tf.keras.Input(input_shape)
X = RandomNoiseAugment()(X_input)
if mfccs:
X = MFCC()(X)
else:
X = LogMelSpectrogram()(X)
X = layers.Lambda(lambda x : x[:,:,1:,:], name="remove_energies")(X)
X = layers.BatchNormalization(axis=-1)(X)
X = SpecAugment()(X)
#remove channel dimension
X = layers.Lambda(lambda x : x[...,0], name="removeChannelDimension")(X)
# projection of patches
# X = layer.Dense(...)(X)
X = layers.Dense(d_model,
kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0., stddev=0.02),
bias_initializer=tf.keras.initializers.Zeros())(X)
# Apply Positional and Class embedding
X = PosAndClassEmbed(num_patches, d_model)(X)
#for cycle on TransformerBlocks
transf_layers = [TransformerBlock(d_model, num_heads, mlp_dim, dropout) for _ in range(num_layers)]
atts = None
for layer in transf_layers:
X, atts = layer(X)
# First (class token) is used for classification,
class_output = layers.Lambda(lambda x : x[:,0], name="getClassToken")(X)
O = layers.Dense(len(output_classes), name="out_layer")(class_output)
model = tf.keras.Model(inputs = [X_input], outputs=[O, atts], name="KWT_"+model_suffix)
return model